IDEAS home Printed from https://ideas.repec.org/a/bla/growch/v53y2022i1p470-486.html
   My bibliography  Save this article

Comparing China’s urban aviation and innovation networks

Author

Listed:
  • Mingming Guan
  • Siyu Wu
  • Chengliang Liu

Abstract

To date, comparative research of multiple urban networks are constantly emerging, but the relationship between virtual networks and physical networks still remains a riddle to be discovered. To step into this field, we used flight data and patent transaction data of prefecture‐level cities in China from 2010 to 2015 to construct the aviation network and the innovation network. After conducting a comparative study, we found that the structure of these two networks is different: the aviation network is a “hub‐and‐spoke network” structure while the innovation network is a diamond‐shaped structure; the spatial organization pattern of the aviation network is decentralized, while the innovation network shows a high geographic agglomeration; furthermore, the connectivity of the aviation network contributes to the balanced regional development, but that of the innovation network shows a preferred trend, with more concentration given to the development of eastern China. Finally, we also found that the innovation network and the aviation network are not completely interdependent, which reveals that the coupling relationship between the “virtual network” and the “physical network” in the urban network is also affected by other factors.

Suggested Citation

  • Mingming Guan & Siyu Wu & Chengliang Liu, 2022. "Comparing China’s urban aviation and innovation networks," Growth and Change, Wiley Blackwell, vol. 53(1), pages 470-486, March.
  • Handle: RePEc:bla:growch:v:53:y:2022:i:1:p:470-486
    DOI: 10.1111/grow.12593
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/grow.12593
    Download Restriction: no

    File URL: https://libkey.io/10.1111/grow.12593?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Juan Alcácer & Michelle Gittelman, 2006. "Patent Citations as a Measure of Knowledge Flows: The Influence of Examiner Citations," The Review of Economics and Statistics, MIT Press, vol. 88(4), pages 774-779, November.
    2. Boschma, Ron & Heimeriks, Gaston & Balland, Pierre-Alexandre, 2014. "Scientific knowledge dynamics and relatedness in biotech cities," Research Policy, Elsevier, vol. 43(1), pages 107-114.
    3. Du, Wen-Bo & Zhou, Xing-Lian & Lordan, Oriol & Wang, Zhen & Zhao, Chen & Zhu, Yan-Bo, 2016. "Analysis of the Chinese Airline Network as multi-layer networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 108-116.
    4. Paleari, Stefano & Redondi, Renato & Malighetti, Paolo, 2010. "A comparative study of airport connectivity in China, Europe and US: Which network provides the best service to passengers?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(2), pages 198-210, March.
    5. Malighetti, Paolo & Paleari, Stefano & Redondi, Renato, 2008. "Connectivity of the European airport network: “Self-help hubbing†and business implications," Journal of Air Transport Management, Elsevier, vol. 14(2), pages 53-65.
    6. Huang, Jie & Wang, Jiaoe, 2017. "A comparison of indirect connectivity in Chinese airport hubs: 2010 vs. 2015," Journal of Air Transport Management, Elsevier, vol. 65(C), pages 29-39.
    7. Derudder, Ben & Witlox, Frank, 2009. "The impact of progressive liberalization on the spatiality of airline networks: a measurement framework based on the assessment of hierarchical differentiation," Journal of Transport Geography, Elsevier, vol. 17(4), pages 276-284.
    8. Chengliang Liu & Caicheng Niu & Ji Han, 2019. "Spatial Dynamics of Intercity Technology Transfer Networks in China’s Three Urban Agglomerations: A Patent Transaction Perspective," Sustainability, MDPI, vol. 11(6), pages 1-24, March.
    9. Wang, Jiaoe & Mo, Huihui & Wang, Fahui, 2014. "Evolution of air transport network of China 1930–2012," Journal of Transport Geography, Elsevier, vol. 40(C), pages 145-158.
    10. Yao, Li & Li, Jun & Li, Jian, 2020. "Urban innovation and intercity patent collaboration: A network analysis of China’s national innovation system," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    11. Wang, Jiaoe & Mo, Huihui & Wang, Fahui & Jin, Fengjun, 2011. "Exploring the network structure and nodal centrality of China’s air transport network: A complex network approach," Journal of Transport Geography, Elsevier, vol. 19(4), pages 712-721.
    12. Martijn J. Burger & Bert van der Knaap & Ronald S. Wall, 2014. "Polycentricity and the Multiplexity of Urban Networks," European Planning Studies, Taylor & Francis Journals, vol. 22(4), pages 816-840, April.
    13. Iris Wanzenböck & Thomas Scherngell & Thomas Brenner, 2014. "Embeddedness of regions in European knowledge networks: a comparative analysis of inter-regional R&D collaborations, co-patents and co-publications," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(2), pages 337-368, September.
    14. David Emanuel Andersson & Saileshsingh Gunessee & Christian Wichmann Matthiessen & Søren Find, 2014. "The Geography of Chinese Science," Environment and Planning A, , vol. 46(12), pages 2950-2971, December.
    15. Freeman, C., 1991. "Networks of innovators: A synthesis of research issues," Research Policy, Elsevier, vol. 20(5), pages 499-514, October.
    16. Antti Vasanen, 2013. "Spatial Integration and Functional Balance in Polycentric Urban Systems: A Multi-Scalar Approach," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 104(4), pages 410-425, September.
    17. Caragliu, Andrea & Del Bo, Chiara F., 2019. "Smart innovative cities: The impact of Smart City policies on urban innovation," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 373-383.
    18. Evert Meijers & Martijn Burger & Evert J. Meijers & Martijn J. Burger & Marloes M. Hoogerbrugge, 2016. "Borrowing size in networks of cities: City size, network connectivity and metropolitan functions in Europe," Papers in Regional Science, Wiley Blackwell, vol. 95(1), pages 181-198, March.
    19. Harald Bathelt & Peng-Fei Li, 2014. "Global cluster networks--foreign direct investment flows from Canada to China," Journal of Economic Geography, Oxford University Press, vol. 14(1), pages 45-71, January.
    20. Derudder, Ben & Witlox, Frank, 2008. "Mapping world city networks through airline flows: context, relevance, and problems," Journal of Transport Geography, Elsevier, vol. 16(5), pages 305-312.
    21. Marco, Antonio De & Scellato, Giuseppe & Ughetto, Elisa & Caviggioli, Federico, 2017. "Global markets for technology: Evidence from patent transactions," Research Policy, Elsevier, vol. 46(9), pages 1644-1654.
    22. Bowen, John T., 2012. "A spatial analysis of FedEx and UPS: hubs, spokes, and network structure," Journal of Transport Geography, Elsevier, vol. 24(C), pages 419-431.
    23. Ben Derudder & Peter J. Taylor, 2018. "Central flow theory: comparative connectivities in the world-city network," Regional Studies, Taylor & Francis Journals, vol. 52(8), pages 1029-1040, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenxi Liu & Zhenghong Peng & Lingbo Liu & Shixuan Li, 2023. "Innovation Networks of Science and Technology Firms: Evidence from China," Land, MDPI, vol. 12(7), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bombelli, Alessandro & Santos, Bruno F. & Tavasszy, Lóránt, 2020. "Analysis of the air cargo transport network using a complex network theory perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    2. Zhu, Zhenran & Zhang, Anming & Zhang, Yahua & Huang, Zhibin & Xu, Shiteng, 2019. "Measuring air connectivity between China and Australia," Journal of Transport Geography, Elsevier, vol. 74(C), pages 359-370.
    3. Yingcheng Li & Nicholas Phelps, 2018. "Megalopolis unbound: Knowledge collaboration and functional polycentricity within and beyond the Yangtze River Delta Region in China, 2014," Urban Studies, Urban Studies Journal Limited, vol. 55(2), pages 443-460, February.
    4. Jiaoe Wang & Fan Xiao & Frédéric Dobruszkes & Wei Wang, 2023. "Seasonality of flights in China: Spatial heterogeneity and its determinants," ULB Institutional Repository 2013/355192, ULB -- Universite Libre de Bruxelles.
    5. Wang, Wei & Cai, Kaiquan & Du, Wenbo & Wu, Xin & Tong, Lu (Carol) & Zhu, Xi & Cao, Xianbin, 2020. "Analysis of the Chinese railway system as a complex network," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    6. Chen, Yu & Wang, Jiaoe & Jin, Fengjun, 2020. "Robustness of China’s air transport network from 1975 to 2017," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    7. Li, Siping & Zhou, Yaoming & Kundu, Tanmoy & Sheu, Jiuh-Biing, 2021. "Spatiotemporal variation of the worldwide air transportation network induced by COVID-19 pandemic in 2020," Transport Policy, Elsevier, vol. 111(C), pages 168-184.
    8. Rodríguez-Déniz, Héctor & Suau-Sanchez, Pere & Voltes-Dorta, Augusto, 2013. "Classifying airports according to their hub dimensions: an application to the US domestic network," Journal of Transport Geography, Elsevier, vol. 33(C), pages 188-195.
    9. Wang, Jiaoe & Xiao, Fan & Dobruszkes, Frédéric & Wang, Wei, 2023. "Seasonality of flights in China: Spatial heterogeneity and its determinants," Journal of Air Transport Management, Elsevier, vol. 108(C).
    10. Chengliang Liu & Caicheng Niu & Ji Han, 2019. "Spatial Dynamics of Intercity Technology Transfer Networks in China’s Three Urban Agglomerations: A Patent Transaction Perspective," Sustainability, MDPI, vol. 11(6), pages 1-24, March.
    11. Pere Suau-Sanchez & Guillaume Burghouwt & Xavier Fageda, 2016. "Reinterpreting EU Air Transport Deregulation: A Disaggregated Analysis of the Spatial Distribution of Traffic in Europe, 1990–2009," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 107(1), pages 48-65, February.
    12. Li, Hongchang & Li, Junru & Zhao, Xiaojun & Kuang, Xujuan, 2022. "The morphological structure and influence factors analysis of China's domestic civil aviation freight transport network," Transport Policy, Elsevier, vol. 125(C), pages 207-217.
    13. Cheung, Tommy K.Y. & Wong, Collin W.H. & Zhang, Anming, 2020. "The evolution of aviation network: Global airport connectivity index 2006–2016," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    14. Jiang, Yonglei & Yao, Baozhen & Wang, Lu & Feng, Tao & Kong, Lu, 2017. "Evolution trends of the network structure of Spring Airlines in China: A temporal and spatial analysis," Journal of Air Transport Management, Elsevier, vol. 60(C), pages 18-30.
    15. Jiaoe Wang & Haoran Yang & Han Wang, 2019. "The Evolution of China’s International Aviation Markets from a Policy Perspective on Air Passenger Flows," Sustainability, MDPI, vol. 11(13), pages 1-15, June.
    16. Zhang, Mingyuan & Liang, Boyuan & Wang, Sheng & Perc, Matjaž & Du, Wenbo & Cao, Xianbin, 2018. "Analysis of flight conflicts in the Chinese air route network," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 97-102.
    17. Zeigler, Patrick & Pagliari, Romano & Suau-Sanchez, Pere & Malighetti, Paolo & Redondi, Renato, 2017. "Low-cost carrier entry at small European airports: Low-cost carrier effects on network connectivity and self-transfer potential," Journal of Transport Geography, Elsevier, vol. 60(C), pages 68-79.
    18. Wang, Junwei & Zhou, Yaoming & Huang, George Q., 2019. "Alternative pair in the airport network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 408-418.
    19. Lieshout, Rogier & Matsumoto, Hidenobu, 2012. "New international services and the competitiveness of Tokyo International Airport," Journal of Transport Geography, Elsevier, vol. 22(C), pages 53-64.
    20. Jiao, Jingjuan & Wang, Jiaoe & Jin, Fengjun, 2017. "Impacts of high-speed rail lines on the city network in China," Journal of Transport Geography, Elsevier, vol. 60(C), pages 257-266.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:growch:v:53:y:2022:i:1:p:470-486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0017-4815 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.