IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i4p3859-3872.html
   My bibliography  Save this article

Conditional cross‐design synthesis estimators for generalizability in Medicaid

Author

Listed:
  • Irina Degtiar
  • Tim Layton
  • Jacob Wallace
  • Sherri Rose

Abstract

While much of the causal inference literature has focused on addressing internal validity biases, both internal and external validity are necessary for unbiased estimates in a target population of interest. However, few generalizability approaches exist for estimating causal quantities in a target population that is not well‐represented by a randomized study but is reflected when additionally incorporating observational data. To generalize to a target population represented by a union of these data, we propose a novel class of conditional cross‐design synthesis estimators that combine randomized and observational data, while addressing their estimates' respective biases—lack of overlap and unmeasured confounding. These methods enable estimating the causal effect of managed care plans on health care spending among Medicaid beneficiaries in New York City, which requires obtaining estimates for the 7% of beneficiaries randomized to a plan and 93% who choose a plan, who do not resemble randomized beneficiaries. Our new estimators include outcome regression, propensity weighting, and double robust approaches. All use the covariate overlap between the randomized and observational data to remove potential unmeasured confounding bias. Applying these methods, we find substantial heterogeneity in spending effects across managed care plans. This has major implications for our understanding of Medicaid, where this heterogeneity has previously been hidden. Additionally, we demonstrate that unmeasured confounding rather than lack of overlap poses a larger concern in this setting.

Suggested Citation

  • Irina Degtiar & Tim Layton & Jacob Wallace & Sherri Rose, 2023. "Conditional cross‐design synthesis estimators for generalizability in Medicaid," Biometrics, The International Biometric Society, vol. 79(4), pages 3859-3872, December.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3859-3872
    DOI: 10.1111/biom.13863
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13863
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13863?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sherri Rose & Sharon‐Lise Normand, 2019. "Double robust estimation for multiple unordered treatments and clustered observations: Evaluating drug‐eluting coronary artery stents," Biometrics, The International Biometric Society, vol. 75(1), pages 289-296, March.
    2. Evan T.R. Rosenman & Guillaume Basse & Art B. Owen & Mike Baiocchi, 2023. "Combining observational and experimental datasets using shrinkage estimators," Biometrics, The International Biometric Society, vol. 79(4), pages 2961-2973, December.
    3. Elizabeth A. Stuart & Stephen R. Cole & Catherine P. Bradshaw & Philip J. Leaf, 2011. "The use of propensity scores to assess the generalizability of results from randomized trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(2), pages 369-386, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quinn Lanners & Cynthia Rudin & Alexander Volfovsky & Harsh Parikh, 2025. "Data Fusion for Partial Identification of Causal Effects," Papers 2505.24296, arXiv.org.
    2. Fabian Kosse & Thomas Deckers & Pia Pinger & Hannah Schildberg-Hörisch & Armin Falk, 2020. "The Formation of Prosociality: Causal Evidence on the Role of Social Environment," Journal of Political Economy, University of Chicago Press, vol. 128(2), pages 434-467.
    3. Wendy Chan, 2018. "Applications of Small Area Estimation to Generalization With Subclassification by Propensity Scores," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 182-224, April.
    4. Harsh Parikh & Trang Quynh Nguyen & Elizabeth A. Stuart & Kara E. Rudolph & Caleb H. Miles, 2025. "A Cautionary Tale on Integrating Studies with Disparate Outcome Measures for Causal Inference," Papers 2505.11014, arXiv.org.
    5. George Z. Gui, 2024. "Combining Observational and Experimental Data to Improve Efficiency Using Imperfect Instruments," Marketing Science, INFORMS, vol. 43(2), pages 378-391, March.
    6. Fan Li & Ashley L. Buchanan & Stephen R. Cole, 2022. "Generalizing trial evidence to target populations in non‐nested designs: Applications to AIDS clinical trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 669-697, June.
    7. Elizabeth Tipton & Robert B. Olsen, "undated". "Enhancing the Generalizability of Impact Studies in Education," Mathematica Policy Research Reports 35d5625333dc480aba9765b3b, Mathematica Policy Research.
    8. Jörg Peters & Jörg Langbein & Gareth Roberts, 2018. "Generalization in the Tropics – Development Policy, Randomized Controlled Trials, and External Validity," The World Bank Research Observer, World Bank, vol. 33(1), pages 34-64.
    9. Yi Yanyao & Zhang Ying & Du Yu & Ye Ting, 2023. "Testing for treatment effect twice using internal and external controls in clinical trials," Journal of Causal Inference, De Gruyter, vol. 11(1), pages 1-13.
    10. Robert W. Hahn & Robert D. Metcalfe, 2021. "Efficiency and Equity Impacts of Energy Subsidies," American Economic Review, American Economic Association, vol. 111(5), pages 1658-1688, May.
    11. Akogun, Oladele & Adesina, Adedoyin & Dillon, Andrew & Friedman, Jed & Njobdi, Sani & Serneels, Pieter, "undated". "Robustness and External Validity: What do we Learn from Repeated Study Designs over Time?," 2018 Annual Meeting, August 5-7, Washington, D.C. 274249, Agricultural and Applied Economics Association.
    12. Kara E. Rudolph & Jonathan Levy & Mark J. van der Laan, 2021. "Transporting stochastic direct and indirect effects to new populations," Biometrics, The International Biometric Society, vol. 77(1), pages 197-211, March.
    13. Dasom Lee & Shu Yang & Lin Dong & Xiaofei Wang & Donglin Zeng & Jianwen Cai, 2023. "Improving trial generalizability using observational studies," Biometrics, The International Biometric Society, vol. 79(2), pages 1213-1225, June.
    14. Sharples, Linda D., 2018. "The role of statistics in the era of big data: Electronic health records for healthcare research," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 105-110.
    15. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.
    16. Francisco Blasques & Paolo Gorgi & Siem Jan Koopman & Noah Stegehuis, 2024. "Mitigating Estimation Risk: a Data-Driven Fusion of Experimental and Observational Data," Tinbergen Institute Discussion Papers 24-066/III, Tinbergen Institute.
    17. Elizabeth A. Stuart & Anna Rhodes, 2017. "Generalizing Treatment Effect Estimates From Sample to Population: A Case Study in the Difficulties of Finding Sufficient Data," Evaluation Review, , vol. 41(4), pages 357-388, August.
    18. Elizabeth Tipton, 2021. "Beyond generalization of the ATE: Designing randomized trials to understand treatment effect heterogeneity," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 504-521, April.
    19. Chen Wang & Shichao Han & Shan Huang, 2025. "Enhancing External Validity of Experiments with Ongoing Sampling," Papers 2502.18253, arXiv.org.
    20. Matthew J Tudball & Rachael A Hughes & Kate Tilling & Jack Bowden & Qingyuan Zhao, 2023. "Sample-constrained partial identification with application to selection bias," Biometrika, Biometrika Trust, vol. 110(2), pages 485-498.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3859-3872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.