IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2505.11014.html
   My bibliography  Save this paper

A Cautionary Tale on Integrating Studies with Disparate Outcome Measures for Causal Inference

Author

Listed:
  • Harsh Parikh
  • Trang Quynh Nguyen
  • Elizabeth A. Stuart
  • Kara E. Rudolph
  • Caleb H. Miles

Abstract

Data integration approaches are increasingly used to enhance the efficiency and generalizability of studies. However, a key limitation of these methods is the assumption that outcome measures are identical across datasets -- an assumption that often does not hold in practice. Consider the following opioid use disorder (OUD) studies: the XBOT trial and the POAT study, both evaluating the effect of medications for OUD on withdrawal symptom severity (not the primary outcome of either trial). While XBOT measures withdrawal severity using the subjective opiate withdrawal scale, POAT uses the clinical opiate withdrawal scale. We analyze this realistic yet challenging setting where outcome measures differ across studies and where neither study records both types of outcomes. Our paper studies whether and when integrating studies with disparate outcome measures leads to efficiency gains. We introduce three sets of assumptions -- with varying degrees of strength -- linking both outcome measures. Our theoretical and empirical results highlight a cautionary tale: integration can improve asymptotic efficiency only under the strongest assumption linking the outcomes. However, misspecification of this assumption leads to bias. In contrast, a milder assumption may yield finite-sample efficiency gains, yet these benefits diminish as sample size increases. We illustrate these trade-offs via a case study integrating the XBOT and POAT datasets to estimate the comparative effect of two medications for opioid use disorder on withdrawal symptoms. By systematically varying the assumptions linking the SOW and COW scales, we show potential efficiency gains and the risks of bias. Our findings emphasize the need for careful assumption selection when fusing datasets with differing outcome measures, offering guidance for researchers navigating this common challenge in modern data integration.

Suggested Citation

  • Harsh Parikh & Trang Quynh Nguyen & Elizabeth A. Stuart & Kara E. Rudolph & Caleb H. Miles, 2025. "A Cautionary Tale on Integrating Studies with Disparate Outcome Measures for Causal Inference," Papers 2505.11014, arXiv.org.
  • Handle: RePEc:arx:papers:2505.11014
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2505.11014
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hidehiko Ichimura & Whitney K. Newey, 2022. "The influence function of semiparametric estimators," Quantitative Economics, Econometric Society, vol. 13(1), pages 29-61, January.
    2. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    3. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    4. Susan Athey & Raj Chetty & Guido W. Imbens & Hyunseung Kang, 2019. "The Surrogate Index: Combining Short-Term Proxies to Estimate Long-Term Treatment Effects More Rapidly and Precisely," NBER Working Papers 26463, National Bureau of Economic Research, Inc.
    5. AmirEmad Ghassami & Alan Yang & David Richardson & Ilya Shpitser & Eric Tchetgen Tchetgen, 2022. "Combining Experimental and Observational Data for Identification and Estimation of Long-Term Causal Effects," Papers 2201.10743, arXiv.org, revised Apr 2022.
    6. Evan T.R. Rosenman & Guillaume Basse & Art B. Owen & Mike Baiocchi, 2023. "Combining observational and experimental datasets using shrinkage estimators," Biometrics, The International Biometric Society, vol. 79(4), pages 2961-2973, December.
    7. Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
    8. Melody Y Huang & Harsh Parikh, 2024. "Towards Generalizing Inferences from Trials to Target Populations," Papers 2402.17042, arXiv.org, revised May 2024.
    9. Shu Yang & Peng Ding, 2020. "Combining Multiple Observational Data Sources to Estimate Causal Effects," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1540-1554, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    2. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
    5. Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
    6. Shi, Ruoyao, 2024. "An Averaging Estimator For Two-Step M-Estimation In Semiparametric Models," Econometric Theory, Cambridge University Press, vol. 40(3), pages 652-687, June.
    7. Simon Calmar Andersen & Louise Beuchert & Phillip Heiler & Helena Skyt Nielsen, 2023. "A Guide to Impact Evaluation under Sample Selection and Missing Data: Teacher's Aides and Adolescent Mental Health," Papers 2308.04963, arXiv.org.
    8. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    9. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Nov 2024.
    10. Taisuke Otsu & Mengshan Xu, 2022. "Isotonic propensity score matching," STICERD - Econometrics Paper Series 623, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    11. Liu, Lin & Mukherjee, Rajarshi & Robins, James M., 2024. "Assumption-lean falsification tests of rate double-robustness of double-machine-learning estimators," Journal of Econometrics, Elsevier, vol. 240(2).
    12. Whitney K. Newey & James M. Robins, 2017. "Cross-fitting and fast remainder rates for semiparametric estimation," CeMMAP working papers 41/17, Institute for Fiscal Studies.
    13. Mengshan Xu & Taisuke Otsu, 2022. "Isotonic propensity score matching," Papers 2207.08868, arXiv.org, revised Jan 2025.
    14. Mert Demirer & Vasilis Syrgkanis & Greg Lewis & Victor Chernozhukov, 2019. "Semi-Parametric Efficient Policy Learning with Continuous Actions," CeMMAP working papers CWP34/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Whitney K. Newey & James M. Robins, 2017. "Cross-fitting and fast remainder rates for semiparametric estimation," CeMMAP working papers CWP41/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Xiaohong Chen & Andres Santos, 2018. "Overidentification in Regular Models," Econometrica, Econometric Society, vol. 86(5), pages 1771-1817, September.
    17. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    18. Kirill Borusyak & Peter Hull & Xavier Jaravel, 2025. "Design-based identification with formula instruments: a review," The Econometrics Journal, Royal Economic Society, vol. 28(1), pages 83-108.
    19. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    20. Xinkun Nie & Stefan Wager, 2017. "Quasi-Oracle Estimation of Heterogeneous Treatment Effects," Papers 1712.04912, arXiv.org, revised Aug 2020.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.11014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.