IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i2p592-596.html
   My bibliography  Save this article

Discussion on “Instrumented difference‐in‐differences” by Ting Ye, Ashkan Ertefaie, James Flory, Sean Hennessy & Dylan S. Small

Author

Listed:
  • Hyunseung Kang

Abstract

We reinterpret the instrumented difference‐in‐differences (iDID) under a linear instrumental variables (IV) model. Under the linear IV model, we show why iDID is a clear improvement over two existing methods, difference‐in‐differences (DID) and a cross‐sectional, IV analysis. We also re‐express some of the assumptions of iDID using familiar, regression‐based identification assumptions. We conclude with a method inspired by the linear IV model that can potentially remedy the weak identification problem in iDID.

Suggested Citation

  • Hyunseung Kang, 2023. "Discussion on “Instrumented difference‐in‐differences” by Ting Ye, Ashkan Ertefaie, James Flory, Sean Hennessy & Dylan S. Small," Biometrics, The International Biometric Society, vol. 79(2), pages 592-596, June.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:592-596
    DOI: 10.1111/biom.13784
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13784
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13784?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Moreira, Marcelo J., 2009. "Tests with correct size when instruments can be arbitrarily weak," Journal of Econometrics, Elsevier, vol. 152(2), pages 131-140, October.
    2. Zijian Guo & Hyunseung Kang & T. Tony Cai & Dylan S. Small, 2018. "Confidence intervals for causal effects with invalid instruments by using two‐stage hard thresholding with voting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 793-815, September.
    3. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
    4. Hyunseung Kang & Anru Zhang & T. Tony Cai & Dylan S. Small, 2016. "Instrumental Variables Estimation With Some Invalid Instruments and its Application to Mendelian Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 132-144, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheng Wang & Hyunseung Kang, 2022. "Weak‐instrument robust tests in two‐sample summary‐data Mendelian randomization," Biometrics, The International Biometric Society, vol. 78(4), pages 1699-1713, December.
    2. David S. Lee & Justin McCrary & Marcelo J. Moreira & Jack Porter, 2022. "Valid t-Ratio Inference for IV," American Economic Review, American Economic Association, vol. 112(10), pages 3260-3290, October.
    3. Joe Hirschberg & Jenny Lye, 2017. "Alternative Graphical Representations of the Confidence Intervals for the Structural Coefficient from Exactly Identified Two-Stage Least Squares," Department of Economics - Working Papers Series 2026, The University of Melbourne.
    4. Bekker, Paul A. & Lawford, Steve, 2008. "Symmetry-based inference in an instrumental variable setting," Journal of Econometrics, Elsevier, vol. 142(1), pages 28-49, January.
    5. Xiaoran Liang & Eleanor Sanderson & Frank Windmeijer, 2022. "Selecting Valid Instrumental Variables in Linear Models with Multiple Exposure Variables: Adaptive Lasso and the Median-of-Medians Estimator," Papers 2208.05278, arXiv.org.
    6. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," NBER Technical Working Papers 0313, National Bureau of Economic Research, Inc.
    7. Russell Davidson & James G. MacKinnon, 2014. "Bootstrap Confidence Sets with Weak Instruments," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 651-675, August.
    8. Keane, Michael & Neal, Timothy, 2023. "Instrument strength in IV estimation and inference: A guide to theory and practice," Journal of Econometrics, Elsevier, vol. 235(2), pages 1625-1653.
    9. Nicolas Apfel & Helmut Farbmacher & Rebecca Groh & Martin Huber & Henrika Langen, 2022. "Detecting Grouped Local Average Treatment Effects and Selecting True Instruments," Papers 2207.04481, arXiv.org, revised Oct 2023.
    10. Qingliang Fan & Yaqian Wu, 2020. "Endogenous Treatment Effect Estimation with some Invalid and Irrelevant Instruments," Papers 2006.14998, arXiv.org.
    11. Chao, John & Swanson, Norman R., 2007. "Alternative approximations of the bias and MSE of the IV estimator under weak identification with an application to bias correction," Journal of Econometrics, Elsevier, vol. 137(2), pages 515-555, April.
    12. Hirschberg, Joe & Lye, Jenny, 2017. "Inverting the indirect—The ellipse and the boomerang: Visualizing the confidence intervals of the structural coefficient from two-stage least squares," Journal of Econometrics, Elsevier, vol. 199(2), pages 173-183.
    13. Eric Gautier & Christiern Rose, 2022. "Fast, Robust Inference for Linear Instrumental Variables Models using Self-Normalized Moments," Papers 2211.02249, arXiv.org, revised Nov 2022.
    14. Anna Mikusheva & Brian P. Poi, 2006. "Tests and confidence sets with correct size when instruments are potentially weak," Stata Journal, StataCorp LP, vol. 6(3), pages 335-347, September.
    15. Guo, Zijian & Kang, Hyunseung & Cai, T. Tony & Small, Dylan S., 2018. "Testing endogeneity with high dimensional covariates," Journal of Econometrics, Elsevier, vol. 207(1), pages 175-187.
    16. Ruoyu Wang & Qihua Wang & Wang Miao, 2023. "A robust fusion-extraction procedure with summary statistics in the presence of biased sources," Biometrika, Biometrika Trust, vol. 110(4), pages 1023-1040.
    17. Moreira, Humberto & Moreira, Marcelo J., 2019. "Optimal two-sided tests for instrumental variables regression with heteroskedastic and autocorrelated errors," Journal of Econometrics, Elsevier, vol. 213(2), pages 398-433.
    18. Donald W.K. Andrews & Patrik Guggenberger, 2007. "Hybrid and Size-Corrected Subsample Methods," Cowles Foundation Discussion Papers 1606, Cowles Foundation for Research in Economics, Yale University.
    19. Martin Emil Jakobsen & Jonas Peters, 2022. "Distributional robustness of K-class estimators and the PULSE [The colonial origins of comparative development: An empirical investigation]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 404-432.
    20. Nicolas Apfel, 2019. "Relaxing the Exclusion Restriction in Shift-Share Instrumental Variable Estimation," Papers 1907.00222, arXiv.org, revised Jul 2022.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:592-596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.