IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v71y2015i1p90-101.html
   My bibliography  Save this article

A joint model for multistate disease processes and random informative observation times, with applications to electronic medical records data

Author

Listed:
  • Jane M. Lange
  • Rebecca A. Hubbard
  • Lurdes Y. T. Inoue
  • Vladimir N. Minin

Abstract

No abstract is available for this item.

Suggested Citation

  • Jane M. Lange & Rebecca A. Hubbard & Lurdes Y. T. Inoue & Vladimir N. Minin, 2015. "A joint model for multistate disease processes and random informative observation times, with applications to electronic medical records data," Biometrics, The International Biometric Society, vol. 71(1), pages 90-101, March.
  • Handle: RePEc:bla:biomet:v:71:y:2015:i:1:p:90-101
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12252
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ryden, Tobias, 1996. "An EM algorithm for estimation in Markov-modulated Poisson processes," Computational Statistics & Data Analysis, Elsevier, vol. 21(4), pages 431-447, April.
    2. R. A. Hubbard & L. Y. T. Inoue & J. R. Fann, 2008. "Modeling Nonhomogeneous Markov Processes via Time Transformation," Biometrics, The International Biometric Society, vol. 64(3), pages 843-850, September.
    3. Mark, Brian L. & Ephraim, Yariv, 2013. "An EM algorithm for continuous-time bivariate Markov chains," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 504-517.
    4. Peter J. Diggle & Raquel Menezes & Ting‐li Su, 2010. "Geostatistical inference under preferential sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 191-232, March.
    5. Chen, Baojiang & Zhou, Xiao-Hua, 2013. "A correlated random effects model for non-homogeneous Markov processes with nonignorable missingness," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 1-13.
    6. Sun, Jianguo & Park, Do-Hwan & Sun, Liuquan & Zhao, Xingqiu, 2005. "Semiparametric Regression Analysis of Longitudinal Data With Informative Observation Times," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 882-889, September.
    7. Paul Fearnhead & Chris Sherlock, 2006. "An exact Gibbs sampler for the Markov‐modulated Poisson process," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(5), pages 767-784, November.
    8. Andrew C. Titman, 2011. "Flexible Nonhomogeneous Markov Models for Panel Observed Data," Biometrics, The International Biometric Society, vol. 67(3), pages 780-787, September.
    9. Shaochuan Lu, 2012. "Markov modulated Poisson process associated with state-dependent marks and its applications to the deep earthquakes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(1), pages 87-106, February.
    10. Andrew C. Titman & Linda D. Sharples, 2010. "Semi-Markov Models with Phase-Type Sojourn Distributions," Biometrics, The International Biometric Society, vol. 66(3), pages 742-752, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:71:y:2015:i:1:p:90-101. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.