IDEAS home Printed from https://ideas.repec.org/a/bjc/journl/v11y2024i4p183-201.html
   My bibliography  Save this article

Software Engineering’s Key Role in AI Content Trustworthiness

Author

Listed:
  • Wumi AJAYI

    (Software Engineering Department, Babcock University, Ilisan Remo, Ogun State Nigeria.)

  • Adekoya Damola Felix

    (Computer Science Department, Lead City University, Ibadan. Oyo State Nigeria.)

  • Ojarikre Oghenenerowho Princewill

    (Computer Science Department, Lead City University, Ibadan. Oyo State Nigeria.)

  • Fajuyigbe Gbenga Joseph

    (Computer Science Department, Lead City University, Ibadan. Oyo State Nigeria.)

Abstract

Artificial intelligence (AI) is the simulation of human intelligence processes by machines, especially computer systems. It can also be defined as the science and engineering of making intelligent machines, especially intelligent computer programs. In recent decades, there has been a discernible surge in the focus of the scientific and government sectors on reliable AI. The International Organization for Standardization, which focuses on technical, industrial, and commercial standardization, has devised several strategies to promote trust in AI systems, with an emphasis on fairness, transparency, accountability, and controllability. Therefore, this paper aims to examine the role of Software Engineering in AI Content trustworthiness.

Suggested Citation

  • Wumi AJAYI & Adekoya Damola Felix & Ojarikre Oghenenerowho Princewill & Fajuyigbe Gbenga Joseph, 2024. "Software Engineering’s Key Role in AI Content Trustworthiness," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(4), pages 183-201, April.
  • Handle: RePEc:bjc:journl:v:11:y:2024:i:4:p:183-201
    as

    Download full text from publisher

    File URL: https://www.rsisinternational.org/journals/ijrsi/digital-library/volume-11-issue-4/183-201.pdf
    Download Restriction: no

    File URL: https://rsisinternational.org/journals/ijrsi/articles/software-engineerings-key-role-in-ai-content-trustworthiness/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nenad Tomašev & Julien Cornebise & Frank Hutter & Shakir Mohamed & Angela Picciariello & Bec Connelly & Danielle C. M. Belgrave & Daphne Ezer & Fanny Cachat van der Haert & Frank Mugisha & Gerald Abil, 2020. "AI for social good: unlocking the opportunity for positive impact," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    2. Wenjuan Fan & Jingnan Liu & Shuwan Zhu & Panos M. Pardalos, 2020. "Investigating the impacting factors for the healthcare professionals to adopt artificial intelligence-based medical diagnosis support system (AIMDSS)," Annals of Operations Research, Springer, vol. 294(1), pages 567-592, November.
    3. Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2018. "Human Decisions and Machine Predictions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(1), pages 237-293.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ciurea Iulia-Cristina, 2024. "The Impact of the EU AI Act on the UN Sustainable Development Goals for 2030 – A Text Analysis," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 2857-2870.
    2. Aliprantis, Dionissi & Martin, Hal & Tauber, Kristen, 2024. "What determines the success of housing mobility programs?," Journal of Housing Economics, Elsevier, vol. 65(C).
    3. Daníelsson, Jón & Macrae, Robert & Uthemann, Andreas, 2022. "Artificial intelligence and systemic risk," Journal of Banking & Finance, Elsevier, vol. 140(C).
    4. Yucheng Yang & Zhong Zheng & Weinan E, 2020. "Interpretable Neural Networks for Panel Data Analysis in Economics," Papers 2010.05311, arXiv.org, revised Nov 2020.
    5. Daniel Carter & Amelia Acker & Dan Sholler, 2021. "Investigative approaches to researching information technology companies," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(6), pages 655-666, June.
    6. Ivan A Canay & Magne Mogstad & Jack Mount, 2024. "On the Use of Outcome Tests for Detecting Bias in Decision Making," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(4), pages 2135-2167.
    7. Md Mohsan Khudri & Kang Keun Rhee & Mohammad Shabbir Hasan & Karar Zunaid Ahsan, 2023. "Predicting nutritional status for women of childbearing age from their economic, health, and demographic features: A supervised machine learning approach," PLOS ONE, Public Library of Science, vol. 18(5), pages 1-31, May.
    8. Ratzanyel Rincón, 2023. "Quarterly multidimensional poverty estimates in Mexico using machine learning algorithms/Estimaciones trimestrales de pobreza multidimensional en México mediante algoritmos de aprendizaje de máquina," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 38(1), pages 3-68.
    9. Klockmann, Victor & von Schenk, Alicia & Villeval, Marie Claire, 2022. "Artificial intelligence, ethics, and intergenerational responsibility," Journal of Economic Behavior & Organization, Elsevier, vol. 203(C), pages 284-317.
    10. Shan Huang & Michael Allan Ribers & Hannes Ullrich, 2021. "The Value of Data for Prediction Policy Problems: Evidence from Antibiotic Prescribing," Discussion Papers of DIW Berlin 1939, DIW Berlin, German Institute for Economic Research.
    11. Daniel Bjorkegren & Joshua E. Blumenstock & Samsun Knight, 2020. "Manipulation-Proof Machine Learning," Papers 2004.03865, arXiv.org.
    12. Anthony Niblett, 2018. "Regulatory Reform in Ontario: Machine Learning and Regulation," C.D. Howe Institute Commentary, C.D. Howe Institute, issue 507, March.
    13. Ekaterina Jussupow & Kai Spohrer & Armin Heinzl & Joshua Gawlitza, 2021. "Augmenting Medical Diagnosis Decisions? An Investigation into Physicians’ Decision-Making Process with Artificial Intelligence," Information Systems Research, INFORMS, vol. 32(3), pages 713-735, September.
    14. Delogu, Marco & Lagravinese, Raffaele & Paolini, Dimitri & Resce, Giuliano, 2024. "Predicting dropout from higher education: Evidence from Italy," Economic Modelling, Elsevier, vol. 130(C).
    15. Anja Garbely & Elias Steiner, 2023. "Understanding compliance with voluntary sustainability standards: a machine learning approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11209-11239, October.
    16. Jason Anastasopoulos & George J. Borjas & Gavin G. Cook & Michael Lachanski, 2018. "Job Vacancies, the Beveridge Curve, and Supply Shocks: The Frequency and Content of Help-Wanted Ads in Pre- and Post-Mariel Miami," NBER Working Papers 24580, National Bureau of Economic Research, Inc.
    17. Kevin Bauer & Andrej Gill, 2024. "Mirror, Mirror on the Wall: Algorithmic Assessments, Transparency, and Self-Fulfilling Prophecies," Information Systems Research, INFORMS, vol. 35(1), pages 226-248, March.
    18. Laura Toschi & Elisa Ughetto & Andrea Fronzetti Colladon, 2023. "The identity of social impact venture capitalists: exploring social linguistic positioning and linguistic distinctiveness through text mining," Small Business Economics, Springer, vol. 60(3), pages 1249-1280, March.
    19. Tamer Boyaci, & Caner Canyakmaz, & Francis de Véricourt,, 2020. "Human and machine: The impact of machine input on decision-making under cognitive limitations," ESMT Research Working Papers ESMT-20-02, ESMT European School of Management and Technology.
    20. Michael A. Ribers & Hannes Ullrich, 2019. "Battling Antibiotic Resistance: Can Machine Learning Improve Prescribing?," Discussion Papers of DIW Berlin 1803, DIW Berlin, German Institute for Economic Research.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bjc:journl:v:11:y:2024:i:4:p:183-201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Renu Malsaria (email available below). General contact details of provider: https://rsisinternational.org/journals/ijrsi/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.