IDEAS home Printed from https://ideas.repec.org/a/bjc/journl/v11y2024i11p840-850.html
   My bibliography  Save this article

Assessment of the Geothermal Source Potential Using Aero Radiometric Data in Parts of South-West and South-South, Nigeria

Author

Listed:
  • Edeye Ejaita

    (Department of Physics, Niger Delta University, Amassoma)

  • Emmanuel E. Udensi

    (Federal University of Technology, Minna)

Abstract

Aeroradiometric surveys have recently become an invaluable resource for geothermal research. The Nigeria Geological Survey Agency (NGSA) provided the airborne radiometric data and other relevant information for the research area. For accurate detection of outliers, we recorded the data at 0.1 second intervals. Geographically, the research region covers the range of longitudes 5.0°E to 6.5°E and latitudes 6.0°N to 7.5°N. Radiogenic heat production (RHP), primarily caused by the decay of uranium, thorium, and potassium isotopes, and the tenary map were the main areas of investigation. We used Rybach’s empirical equation to determine the relative heat production (RHP) by relating the rock’s uranium (Cu), thorium (CTh), and potassium (CK) concentrations. The RHP values of six distinct profiles were calculated over the research area. Due to their higher RHP values (1.028928, 1.031824, and 1.023776 μW/m³, respectively), Profiles 2, 3, and 6 were deemed appropriate geothermal locations. There is a considerable lot of potential for geothermal energy production in Profile 3, which has the highest RHP, as well as in Profiles 2 and 6. Areas with large concentrations of radioactive elements were also shown by the ternary picture and concentration maps, along with regions with notable geothermal gradients and heat flow. Consequently, the regions around Edo State municipalities like as Okada, Okakpan, and Ugboku are ideal for geothermal energy. Geothermal exploration is most effective in areas with large concentrations of radiogenic elements, according to the study’s results, which provide the groundwork for further investigation in these areas.

Suggested Citation

  • Edeye Ejaita & Emmanuel E. Udensi, 2024. "Assessment of the Geothermal Source Potential Using Aero Radiometric Data in Parts of South-West and South-South, Nigeria," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(11), pages 840-850, November.
  • Handle: RePEc:bjc:journl:v:11:y:2024:i:11:p:840-850
    as

    Download full text from publisher

    File URL: https://www.rsisinternational.org/journals/ijrsi/digital-library/volume-11-issue-11/840-850.pdf
    Download Restriction: no

    File URL: https://rsisinternational.org/journals/ijrsi/articles/assessment-of-the-geothermal-source-potential-using-aero-radiometric-data-in-parts-of-south-west-and-south-south-nigeria/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elbarbary, S. & Abdel Zaher, M. & Mesbah, H. & El-Shahat, A. & Embaby, A., 2018. "Curie point depth, heat flow and geothermal gradient maps of Egypt deduced from aeromagnetic data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 620-629.
    2. Eteh Desmond Rowland & Abiola Abimbola Lolade & Digha Opaminola Nicholas & Alfred Wilson Opukumo & Francis Omonefe, 2022. "The Environmental Impact of Shoreline Changes and Land Use/Land Cover Change Detection in the Niger Delta Region using Geospatial Technology," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 12(4), pages 237-248.
    3. Philip Ejoor Agbonifo, 2016. "Natural Gas Distribution Infrastructure and the Quest for Environmental Sustainability in the Niger Delta: The Prospect of Natural Gas Utilization in Nigeria," International Journal of Energy Economics and Policy, Econjournals, vol. 6(3), pages 442-448.
    4. Simeon Olatayo Jekayinfa & Joseph Ifeolu Orisaleye & Ralf Pecenka, 2020. "An Assessment of Potential Resources for Biomass Energy in Nigeria," Resources, MDPI, vol. 9(8), pages 1-43, August.
    5. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Odei Erdiaw‐Kwasie & Kofi Kusi Owusu‐Ansah & Matthew Abunyewah, 2024. "Amplifying circular technological innovation for low greenhouse emissions: Empirical evidence from 30 advanced and emerging economies," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(4), pages 3708-3721, August.
    2. Yu, Shiwei & Zheng, Shuhong & Li, Xia, 2018. "The achievement of the carbon emissions peak in China: The role of energy consumption structure optimization," Energy Economics, Elsevier, vol. 74(C), pages 693-707.
    3. Zhengyang Li & Yukuan Wang & Yafeng Lu & Shravan Kumar Ghimire, 2023. "Spatio-Temporal Evolution of Carbon Emission in China’s Tertiary Industry: A Decomposition of Influencing Factors from the Perspective of Energy-Industry-Consumption," Energies, MDPI, vol. 16(15), pages 1-18, August.
    4. Karl Aiginger, 2016. "New Dynamics for Europe: Reaping the Benefits of Socio-ecological Transition – Part I: Synthesis. WWWforEurope Deliverable No. 11," WIFO Studies, WIFO, number 58791, July.
    5. Qinyi Huang & Yu Zhang, 2021. "Decoupling and Decomposition Analysis of Agricultural Carbon Emissions: Evidence from Heilongjiang Province, China," IJERPH, MDPI, vol. 19(1), pages 1-16, December.
    6. Burke, Paul J. & Liao, Hua, 2015. "Is the price elasticity of demand for coal in China increasing?," China Economic Review, Elsevier, vol. 36(C), pages 309-322.
    7. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    8. Man, Yi & Yan, Yukun & Wang, Xu & Ren, Jingzheng & Xiong, Qingang & He, Zhenglei, 2023. "Overestimated carbon emission of the pulp and paper industry in China," Energy, Elsevier, vol. 273(C).
    9. Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard Barry & Tong, Zheming, 2016. "Energy Saving Potential of Natural Ventilation in China: The Impact of Ambient Air Pollution," Scholarly Articles 27733689, Harvard University Department of Economics.
    10. Jean Gaston Tamba & Salom Ndjakomo Essiane & Emmanuel Flavian Sapnken & Francis Djanna Koffi & Jean Luc Nsouand l & Bozidar Soldo & Donatien Njomo, 2018. "Forecasting Natural Gas: A Literature Survey," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 216-249.
    11. Kexi Pan & Yongfu Li & Hanxiong Zhu & Anrong Dang, 2017. "Spatial Configuration of Energy Consumption and Carbon Emissions of Shanghai, and Our Policy Suggestions," Sustainability, MDPI, vol. 9(1), pages 1-15, January.
    12. Zhang, Haoran & Li, Ruixiong & Cai, Xingrui & Zheng, Chaoyue & Liu, Laibao & Liu, Maodian & Zhang, Qianru & Lin, Huiming & Chen, Long & Wang, Xuejun, 2022. "Do electricity flows hamper regional economic–environmental equity?," Applied Energy, Elsevier, vol. 326(C).
    13. Hui Wen & Yi Li & Zirong Li & Xiaoxue Cai & Fengxia Wang, 2022. "Spatial Differentiation of Carbon Budgets and Carbon Balance Zoning in China Based on the Land Use Perspective," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    14. Cao, Libin & Tang, Yiqi & Cai, Bofeng & Wu, Pengcheng & Zhang, Yansen & Zhang, Fengxue & Xin, Bo & Lv, Chen & Chen, Kai & Fang, Kai, 2021. "Was it better or worse? Simulating the environmental and health impacts of emissions trading scheme in Hubei province, China," Energy, Elsevier, vol. 217(C).
    15. Kusuma, Ravi Teja & Hiremath, Rahul B. & Rajesh, Pachimatla & Kumar, Bimlesh & Renukappa, Suresh, 2022. "Sustainable transition towards biomass-based cement industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    16. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    17. Jianghua Liu & Mengxu Li & Yitao Ding, 2021. "Econometric analysis of the impact of the urban population size on carbon dioxide (CO2) emissions in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18186-18203, December.
    18. Chun Yang & Shaohua Tan & Hantao Zhou & Wei Zeng, 2024. "Towards Sustainable Rural Development: Assessment Spatio-Temporal Evolution of Rural Ecosystem Health through Integrating Ecosystem Integrity and SDGs," Land, MDPI, vol. 13(10), pages 1-25, October.
    19. Yang, Jie & Huang, Yijing & Takeuchi, Kenji, 2022. "Does drought increase carbon emissions? Evidence from Southwestern China," Ecological Economics, Elsevier, vol. 201(C).
    20. Lei Zhao & Wenbin Pan & Hao Lin, 2022. "Can Fujian Achieve Carbon Peak and Pollutant Reduction Targets before 2030? Case Study of 3E System in Southeastern China Based on System Dynamics," Sustainability, MDPI, vol. 14(18), pages 1-22, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bjc:journl:v:11:y:2024:i:11:p:840-850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Renu Malsaria (email available below). General contact details of provider: https://rsisinternational.org/journals/ijrsi/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.