IDEAS home Printed from https://ideas.repec.org/a/bit/bsrysr/v5y2014i2p61-71.html
   My bibliography  Save this article

Decision Tree Approach to Discovering Fraud in Leasing Agreements

Author

Listed:
  • Horvat Ivan

    (VB Leasing d.o.o., Croatia)

  • Pejić Bach Mirjana

    (Faculty of Economics & Business - Zagreb, University of Zagreb, Croatia)

  • Merkač Skok Marjana

    (Fakulteta za poslovne in komercijalne vede, Slovenia)

Abstract

Background: Fraud attempts create large losses for financing subjects in modern economies. At the same time, leasing agreements have become more and more popular as a means of financing objects such as machinery and vehicles, but are more vulnerable to fraud attempts. Objectives: The goal of the paper is to estimate the usability of the data mining approach in discovering fraud in leasing agreements. Methods/Approach: Real-world data from one Croatian leasing firm was used for creating tow models for fraud detection in leasing. The decision tree method was used for creating a classification model, and the CHAID algorithm was deployed. Results: The decision tree model has indicated that the object of the leasing agreement had the strongest impact on the probability of fraud. Conclusions: In order to enhance the probability of the developed model, it would be necessary to develop software that would enable automated, quick and transparent retrieval of data from the system, processing according to the rules and displaying the results in multiple categories.

Suggested Citation

  • Horvat Ivan & Pejić Bach Mirjana & Merkač Skok Marjana, 2014. "Decision Tree Approach to Discovering Fraud in Leasing Agreements," Business Systems Research, Sciendo, vol. 5(2), pages 61-71, September.
  • Handle: RePEc:bit:bsrysr:v:5:y:2014:i:2:p:61-71
    as

    Download full text from publisher

    File URL: https://www.degruyter.com/view/j/bsrj.2041.5.issue-2/bsrj-2014-0010/bsrj-2014-0010.xml?format=INT
    Download Restriction: no

    References listed on IDEAS

    as
    1. Coussement, Kristof & Van den Bossche, Filip A.M. & De Bock, Koen W., 2014. "Data accuracy's impact on segmentation performance: Benchmarking RFM analysis, logistic regression, and decision trees," Journal of Business Research, Elsevier, vol. 67(1), pages 2751-2758.
    2. McCarty, John A. & Hastak, Manoj, 2007. "Segmentation approaches in data-mining: A comparison of RFM, CHAID, and logistic regression," Journal of Business Research, Elsevier, vol. 60(6), pages 656-662, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    decision tree; fraud detection; leasing fraud; cars; data mining; leasing agreements;

    JEL classification:

    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bit:bsrysr:v:5:y:2014:i:2:p:61-71. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: https://www.sciendo.com/services/journals .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.