IDEAS home Printed from https://ideas.repec.org/a/bdr/ensayo/v30y2012i68p14-71.html
   My bibliography  Save this article

Dinámica de la política monetaria e inflación objetivo en Colombia: una aproximación FAVAR

Author

Listed:
  • Andrés Felipe Londoño
  • Jorge Andrés Tamayo
  • Carlos Alberto Velásquez

Abstract

En este trabajo se analiza la dinámica de la política monetaria sobre la actividad económica real y los precios en Colombia durante el período 2001:1-2009:12. Utilizando una nueva metodología que combina los modelos VAR con los recientes desarrollos en el campo del análisis factorial dinámico (FAVAR, por sus siglas en inglés) propuesta por Bernanke, Boivin y Eliasz (2005), se llevan a cabo diferentes especificaciones en donde se muestra las reacciones de distintas variables macroeconómicas ante una innovación en el instrumento de política monetaria. Los resultados sugieren que el modelo FAVAR estimado para la economía colombiana logra capturar de forma adecuada y comprensible los canales de transmisión de la política monetaria. En particular, se observa un rezago de la política monetaria que oscila entre 12 y 18 meses para las variables reales, y alrededor de dos años para las variables de precios.

Suggested Citation

  • Andrés Felipe Londoño & Jorge Andrés Tamayo & Carlos Alberto Velásquez, 2012. "Dinámica de la política monetaria e inflación objetivo en Colombia: una aproximación FAVAR," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 30(68), pages 14-71, June.
  • Handle: RePEc:bdr:ensayo:v:30:y:2012:i:68:p:14-71
    DOI: 10.32468/Espe.6801
    as

    Download full text from publisher

    File URL: https://doi.org/10.32468/Espe.6801
    Download Restriction: no

    File URL: https://libkey.io/10.32468/Espe.6801?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bai, Jushan & Ng, Serena, 2008. "Large Dimensional Factor Analysis," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(2), pages 89-163, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergio Iván Prada & Julio C. Alonso & Juli�n Fern�ndez, 2019. "Exchange rate pass-through into consumer healthcare prices in Colombia," Revista Cuadernos de Economia, Universidad Nacional de Colombia, FCE, CID, vol. 38(77), pages 523-550.
    2. repec:udc:esteco:v:44:y:2017:i:2:p:97-124 is not listed on IDEAS
    3. Carlos Fernando Daza Moreno & Jorge Mario Uribe, 2016. "Efectos de los cambios de la tasa de interés de Estados Unidos sobre Colombia, Perú y Chile," Revista de Economía del Caribe, Universidad del Norte, vol. 0(0), pages 1-19.
    4. Esther Barros-Campello & Carlos Pateiro-Rodríguez & J. Venancio Salcines-Cristal & Carlos Pateiro-López, 2017. "El esquema de objetivos de inflación: Evidencia para América Latina (1999-2015)," Estudios de Economia, University of Chile, Department of Economics, vol. 44(2 Year 20), pages 223-250, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sven Otto & Nazarii Salish, 2022. "Approximate Factor Models for Functional Time Series," Papers 2201.02532, arXiv.org, revised Feb 2025.
    2. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    3. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    4. Bai, Jushan & Ng, Serena, 2019. "Rank regularized estimation of approximate factor models," Journal of Econometrics, Elsevier, vol. 212(1), pages 78-96.
    5. Andrés Felipe Londono & Jorge Andr�s Tamayo & Carlos Alberto Vel�squez, 2012. "Dinámica de la política monetaria e inflación objetivo en Colombia: una aproximación FAVAR," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, vol. 30(68), pages 14-71.
    6. Mao, Guangyu & Shen, Yan, 2019. "Bubbles or fundamentals? Modeling provincial house prices in China allowing for cross-sectional dependence," China Economic Review, Elsevier, vol. 53(C), pages 53-64.
    7. Luke Hartigan & James Morley, 2020. "A Factor Model Analysis of the Australian Economy and the Effects of Inflation Targeting," The Economic Record, The Economic Society of Australia, vol. 96(314), pages 271-293, September.
    8. Chiara Casoli & Riccardo (Jack) Lucchetti, 2022. "Permanent-Transitory decomposition of cointegrated time series via dynamic factor models, with an application to commodity prices [Commodity-price comovement and global economic activity]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 494-514.
    9. González-Rivera, Gloria & Maldonado, Javier & Ruiz, Esther, 2019. "Growth in stress," International Journal of Forecasting, Elsevier, vol. 35(3), pages 948-966.
    10. William A. Barnett & Marcelle Chauvet & Danilo Leiva‐Leon & Liting Su, 2024. "The Credit‐Card‐Services Augmented Divisia Monetary Aggregates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 56(5), pages 1163-1202, August.
    11. Jean Boivin & Marc P. Giannoni & Dalibor Stevanović, 2020. "Dynamic Effects of Credit Shocks in a Data-Rich Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 272-284, April.
    12. Reese, Simon, 2015. "Asymptotic Inference in the Lee-Carter Model for Modelling Mortality Rates," Working Papers 2015:16, Lund University, Department of Economics.
    13. Georges Bresson & Jean-Michel Etienne & Pierre Mohnen, 2011. "How important is innovation? A Bayesian factor-augmented productivity model on panel data," TEPP Working Paper 2011-06, TEPP.
    14. André Nunes Maranhão & Nicole Rennó Castro, 2023. "Dissecting Brazilian agriculture business cycles in high-dimensional and time-irregular span contexts," Empirical Economics, Springer, vol. 65(4), pages 1543-1578, October.
    15. Jungjun Choi & Ming Yuan, 2024. "High Dimensional Factor Analysis with Weak Factors," Papers 2402.05789, arXiv.org.
    16. Jiahe Lin & George Michailidis, 2019. "Approximate Factor Models with Strongly Correlated Idiosyncratic Errors," Papers 1912.04123, arXiv.org.
    17. repec:hum:wpaper:sfb649dp2014-004 is not listed on IDEAS
    18. David Kohns & Tibor Szendrei, 2020. "Horseshoe Prior Bayesian Quantile Regression," Papers 2006.07655, arXiv.org, revised Mar 2021.
    19. Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting the French index of industrial production: A comparison from bridge and factor models," Economic Modelling, Elsevier, vol. 29(6), pages 2174-2182.
    20. Bodnar, Taras & Reiß, Markus, 2016. "Exact and asymptotic tests on a factor model in low and large dimensions with applications," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 125-151.
    21. Oguzhan Cepni & Rangan Gupta & I. Ethem Güney & M. Yilmaz, 2020. "Forecasting local currency bond risk premia of emerging markets: The role of cross‐country macrofinancial linkages," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 966-985, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E42 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Monetary Sytsems; Standards; Regimes; Government and the Monetary System
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdr:ensayo:v:30:y:2012:i:68:p:14-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Clorith Angélica Bahos Olivera (email available below). General contact details of provider: https://edirc.repec.org/data/brcgvco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.