IDEAS home Printed from https://ideas.repec.org/a/ags/apstra/339752.html
   My bibliography  Save this article

Evaluation Of Crop And Irrigation Water Requirements For Some Selected Crops In Apulia Region -Southern Italy

Author

Listed:
  • Alobid, Mohannad
  • István, Szűcs

Abstract

Nowadays, nearly 90% of global water consumption is caused by irrigation activities, and more than 40% of the crops are produced under irrigated conditions. This study is an endeavour to estimate the irrigation water requirement (IWR) and crop water requirement (CWR) for some selected crops (Pepper, Eggplant, Potato, Soybean, Maize, Wheat Melon, Lettuce, Sunflower, Broadbean, Citrus, Cherry, Olive tree, Sugarbeet, Artichoke, Wine Grapes, Carrot...etc.) in Sothern Italy. The selected districts (Sant’ Arcangelo) have been taken as a case study area. Demanded meteorologically (rainfall, temperature, humidity, wind speed, sunshine hours) and crop data (crop coefficient and crop calendar) have been collected for 30 years period from 1981 to 2011. FAO CROPWATv8.0 software has been applied for requisite calculation of CWR and IWR along with the developing of cropping patterns. The FAO Penman-Monteith equation is used for estimating the reference evapotranspiration (ET0) by using meteorological data in the framework of CROPWAT model as it regarded as a good evaluator for a wide variety of climatic conditions. The analysis indicates that FAO Penman-Monteith suits very well for the study area and can be successfully used for the estimation of reference evapotranspiration. The important results in this study indicate that the IWR is very low from November to April (wintertime) due to higher rainfall intensity in these months and from month May to October a considerable amount of water is required for irrigation.

Suggested Citation

  • Alobid, Mohannad & István, Szűcs, 2019. "Evaluation Of Crop And Irrigation Water Requirements For Some Selected Crops In Apulia Region -Southern Italy," APSTRACT: Applied Studies in Agribusiness and Commerce, AGRIMBA, vol. 13(3-4), December.
  • Handle: RePEc:ags:apstra:339752
    DOI: 10.22004/ag.econ.339752
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/339752/files/Alobid.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.339752?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aggarwal, P.K. & Banerjee, B. & Daryaei, M.G. & Bhatia, A. & Bala, A. & Rani, S. & Chander, S. & Pathak, H. & Kalra, N., 2006. "InfoCrop: A dynamic simulation model for the assessment of crop yields, losses due to pests, and environmental impact of agro-ecosystems in tropical environments. II. Performance of the model," Agricultural Systems, Elsevier, vol. 89(1), pages 47-67, July.
    2. Aggarwal, P.K. & Kalra, N. & Chander, S. & Pathak, H., 2006. "InfoCrop: A dynamic simulation model for the assessment of crop yields, losses due to pests, and environmental impact of agro-ecosystems in tropical environments. I. Model description," Agricultural Systems, Elsevier, vol. 89(1), pages 1-25, July.
    3. Dhungana, P. & Eskridge, K.M. & Weiss, A. & Baenziger, P.S., 2006. "Designing crop technology for a future climate: An example using response surface methodology and the CERES-Wheat model," Agricultural Systems, Elsevier, vol. 87(1), pages 63-79, January.
    4. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saon Banerjee & Subharanjan Das & Asis Mukherjee & Apurba Mukherjee & B. Saikia, 2016. "Adaptation strategies to combat climate change effect on rice and mustard in Eastern India," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(2), pages 249-261, February.
    2. M. Sujithra & Subhash Chander, 2013. "Simulation of rice brown planthopper, Nilaparvata lugens (Stal.) population and crop-pest interactions to assess climate change impact," Climatic Change, Springer, vol. 121(2), pages 331-347, November.
    3. Paresh B. Shirsath & Vinay Kumar Sehgal & Pramod K. Aggarwal, 2020. "Downscaling Regional Crop Yields to Local Scale Using Remote Sensing," Agriculture, MDPI, vol. 10(3), pages 1-14, March.
    4. Kattarkandi Byjesh & Soora Kumar & Pramod Aggarwal, 2010. "Simulating impacts, potential adaptation and vulnerability of maize to climate change in India," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(5), pages 413-431, June.
    5. Fargue-Lelièvre, A. & Le Cœur, D. & Baudry, J., 2011. "Integrating farming techniques in an ecological matrix model: Implementation on the primrose (Primula vulgaris)," Ecological Modelling, Elsevier, vol. 222(4), pages 1002-1015.
    6. Dhakar, Rajkumar & Sehgal, Vinay Kumar & Chakraborty, Debasish & Sahoo, Rabi Narayan & Mukherjee, Joydeep & Ines, Amor V.M. & Kumar, Soora Naresh & Shirsath, Paresh B. & Roy, Somnath Baidya, 2022. "Field scale spatial wheat yield forecasting system under limited field data availability by integrating crop simulation model with weather forecast and satellite remote sensing," Agricultural Systems, Elsevier, vol. 195(C).
    7. Pathak, H. & Wassmann, R., 2007. "Introducing greenhouse gas mitigation as a development objective in rice-based agriculture: I. Generation of technical coefficients," Agricultural Systems, Elsevier, vol. 94(3), pages 807-825, June.
    8. Trnka, M. & Muška, F. & Semerádová, D. & Dubrovský, M. & Kocmánková, E. & Žalud, Z., 2007. "European Corn Borer life stage model: Regional estimates of pest development and spatial distribution under present and future climate," Ecological Modelling, Elsevier, vol. 207(2), pages 61-84.
    9. Siad, Si Mokrane & Iacobellis, Vito & Zdruli, Pandi & Gioia, Andrea & Stavi, Ilan & Hoogenboom, Gerrit, 2019. "A review of coupled hydrologic and crop growth models," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    10. Verma, Amit Kumar & Garg, Pradeep Kumar & Prasad, K.S. Hari & Dadhwal, Vinay Kumar, 2023. "Variety-specific sugarcane yield simulations and climate change impacts on sugarcane yield using DSSAT-CSM-CANEGRO model," Agricultural Water Management, Elsevier, vol. 275(C).
    11. Sulav Paudel & Lalit P. Sah & Mukti Devkota & Vijaya Poudyal & P.V. Vara Prasad & Manuel R. Reyes, 2020. "Conservation Agriculture and Integrated Pest Management Practices Improve Yield and Income while Reducing Labor, Pests, Diseases and Chemical Pesticide Use in Smallholder Vegetable Farms in Nepal," Sustainability, MDPI, vol. 12(16), pages 1-16, August.
    12. Singh, P. & Aggarwal, P. K. & Bhatia, V. S. & Murty, M. V. R. & Pala, M. & Oweis, T. & Benli, B. & Rao, K. P. C. & Wani, S. P., 2009. "Yield gap analysis: modelling of achievable yields at farm level," IWMI Books, Reports H041995, International Water Management Institute.
    13. Selvaraj Krishnan & Subhash Chander, 2015. "Simulation of climatic change impact on crop-pest interactions: a case study of rice pink stem borer Sesamia inferens (Walker)," Climatic Change, Springer, vol. 131(2), pages 259-272, July.
    14. Kumar, Manoj & Kalra, Naveen & Khaiter, Peter & Ravindranath, N.H. & Singh, Varsha & Singh, Hukum & Sharma, Subrat & Rahnamayan, Shahryar, 2019. "PhenoPine: A simulation model to trace the phenological changes in Pinus roxhburghii in response to ambient temperature rise," Ecological Modelling, Elsevier, vol. 404(C), pages 12-20.
    15. K. Viswanath & P. Sinha & S. Naresh Kumar & Taru Sharma & Shalini Saxena & Shweta Panjwani & H. Pathak & Shalu Mishra Shukla, 2017. "Simulation of leaf blast infection in tropical rice agro-ecology under climate change scenario," Climatic Change, Springer, vol. 142(1), pages 155-167, May.
    16. Naresh Soora & P. Aggarwal & Rani Saxena & Swaroopa Rani & Surabhi Jain & Nitin Chauhan, 2013. "An assessment of regional vulnerability of rice to climate change in India," Climatic Change, Springer, vol. 118(3), pages 683-699, June.
    17. A. Mukherjee & A. K. S. Huda, 2018. "Assessment of climate variability and trend on wheat productivity in West Bengal, India: crop growth simulation approach," Climatic Change, Springer, vol. 147(1), pages 235-252, March.
    18. Dubey, Rachana & Pathak, Himanshu & Chakrabarti, Bidisha & Singh, Shivdhar & Gupta, Dipak Kumar & Harit, R.C., 2020. "Impact of terminal heat stress on wheat yield in India and options for adaptation," Agricultural Systems, Elsevier, vol. 181(C).
    19. Kalra, Naveen & Chakraborty, Debashis & Ramesh Kumar, P. & Jolly, Monica & Sharma, P.K., 2007. "An approach to bridging yield gaps, combining response to water and other resource inputs for wheat in northern India, using research trials and farmers' fields data," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 54-64, October.
    20. Mishra, Ashok & Siderius, Christian & Aberson, Kenny & van der Ploeg, Martine & Froebrich, Jochen, 2013. "Short-term rainfall forecasts as a soft adaptation to climate change in irrigation management in North-East India," Agricultural Water Management, Elsevier, vol. 127(C), pages 97-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:apstra:339752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: http://www.apstract.net/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.