IDEAS home Printed from https://ideas.repec.org/a/ags/aolpei/309925.html
   My bibliography  Save this article

Using Data Envelopment Analysis in Credit Risk Evaluation of ICT Companies

Author

Listed:
  • Kavčáková, Michaela
  • Kočišová, Kristína

Abstract

The aim of the paper is to explore possibilities of diagnosis corporate credit risk through DEA and design an appropriate model for diagnosis of credit risk, which can be used in different sectors of national economy (e.g. agricultural, service sector or industry and innovation sector). The model differs from the conventional application of DEA because of variables selection and construction of production-possibility frontier. We illustrate application of models on sample 110 randomly selected companies during the 2013-2017 period. The reason for choosing the ICT companies is the fact that this sector is considered to be driving force behind the growth of the economy. The data has been obtained from Finstat. The results are divided into identification of 3 zones of corporate financial health with a different stage of credit risk. They show that DEA achieves a satisfactory value of a correct classification into the relevant zone (financial health, grey, and financial distress zone), but also the relatively high error rate of the DEA in the identification of companies in financial distress.

Suggested Citation

  • Kavčáková, Michaela & Kočišová, Kristína, 2020. "Using Data Envelopment Analysis in Credit Risk Evaluation of ICT Companies," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 10(3), December.
  • Handle: RePEc:ags:aolpei:309925
    DOI: 10.22004/ag.econ.309925
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/309925/files/Using%20Data%20Envelopment%20Analysis%20in%20Credit%20Risk%20Evaluation%20of%20ICT%20Companies.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.309925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter Bogetoft & Lars Otto, 2011. "Additional Topics in DEA," International Series in Operations Research & Management Science, in: Benchmarking with DEA, SFA, and R, chapter 0, pages 115-153, Springer.
    2. Jan Vavřina & David Hampel & Jitka Janová, 2013. "New approaches for the financial distress classification in agribusiness," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 61(4), pages 1177-1182.
    3. Zhao, Jianmei & Barry, Peter J. & Katchova, Ani L., 2008. "Signaling Credit Risk in Agriculture: Implications for Capital Structure Analysis," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 40(3), pages 805-820, December.
    4. Bandyopadhyay, Arindam, 2007. "Credit Risk Models for Managing Bank’s Agricultural Loan Portfolio," MPRA Paper 5357, University Library of Munich, Germany.
    5. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
    6. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    7. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    8. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    9. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    10. Peter Bogetoft & Lars Otto, 2011. "Benchmarking with DEA, SFA, and R," International Series in Operations Research and Management Science, Springer, number 978-1-4419-7961-2, April.
    11. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    12. Brewer, Brady & Wilson, Christine & Featherstone, Allen & Harris, J. & Erickson, Ken & Hallahan, Charles, 2012. "Measuring the Financial Health of U.S. Production Agriculture," Journal of the ASFMRA, American Society of Farm Managers and Rural Appraisers, vol. 2012, pages 1-16.
    13. Joseph Paradi & Mette Asmild & Paul Simak, 2004. "Using DEA and Worst Practice DEA in Credit Risk Evaluation," Journal of Productivity Analysis, Springer, vol. 21(2), pages 153-165, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Róbert Štefko & Jarmila Horváthová & Martina Mokrišová, 2020. "Bankruptcy Prediction with the Use of Data Envelopment Analysis: An Empirical Study of Slovak Businesses," JRFM, MDPI, vol. 13(9), pages 1-15, September.
    2. Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
    3. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    4. Ioannis Tsolas, 2015. "Firm credit risk evaluation: a series two-stage DEA modeling framework," Annals of Operations Research, Springer, vol. 233(1), pages 483-500, October.
    5. Jamal Ouenniche & Kaoru Tone, 2017. "An out-of-sample evaluation framework for DEA with application in bankruptcy prediction," Annals of Operations Research, Springer, vol. 254(1), pages 235-250, July.
    6. Necmi Avkiran & Lin Cai, 2014. "Identifying distress among banks prior to a major crisis using non-oriented super-SBM," Annals of Operations Research, Springer, vol. 217(1), pages 31-53, June.
    7. Barbero, Javier & Zofío, José L., 2023. "The measurement of profit, profitability, cost and revenue efficiency through data envelopment analysis: A comparison of models using BenchmarkingEconomicEfficiency.jl," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    8. Róbert Štefko & Jarmila Horváthová & Martina Mokrišová, 2021. "The Application of Graphic Methods and the DEA in Predicting the Risk of Bankruptcy," JRFM, MDPI, vol. 14(5), pages 1-19, May.
    9. Rezaeiani, M.J. & Foroughi, A.A., 2018. "Ranking efficient decision making units in data envelopment analysis based on reference frontier share," European Journal of Operational Research, Elsevier, vol. 264(2), pages 665-674.
    10. Zarrin, Mansour & Brunner, Jens O., 2023. "Analyzing the accuracy of variable returns to scale data envelopment analysis models," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1286-1301.
    11. Premachandra, I.M. & Bhabra, Gurmeet Singh & Sueyoshi, Toshiyuki, 2009. "DEA as a tool for bankruptcy assessment: A comparative study with logistic regression technique," European Journal of Operational Research, Elsevier, vol. 193(2), pages 412-424, March.
    12. Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
    13. Wanke, Peter & Barros, Carlos P. & Faria, João R., 2015. "Financial distress drivers in Brazilian banks: A dynamic slacks approach," European Journal of Operational Research, Elsevier, vol. 240(1), pages 258-268.
    14. Yildirim, Alev, 2020. "The effect of relationship banking on firm efficiency and default risk," Journal of Corporate Finance, Elsevier, vol. 65(C).
    15. Eling, Martin & Jia, Ruo, 2018. "Business failure, efficiency, and volatility: Evidence from the European insurance industry," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 58-76.
    16. Mohsen Afsharian & Anna Kryvko & Peter Reichling, 2011. "Efficiency and Its Impact on the Performance of European Commercial Banks," FEMM Working Papers 110018, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    17. Imanirad, Raha & Cook, Wade D. & Aviles-Sacoto, Sonia Valeria & Zhu, Joe, 2015. "Partial input to output impacts in DEA: The case of DMU-specific impacts," European Journal of Operational Research, Elsevier, vol. 244(3), pages 837-844.
    18. Vittadini, Giorgio & Sturaro, Caterina & Folloni, Giuseppe, 2022. "Non-Cognitive Skills and Cognitive Skills to measure school efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    19. Aparicio, Juan & Kapelko, Magdalena, 2019. "Accounting for slacks to measure dynamic inefficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 278(2), pages 463-471.
    20. Amineh Ghazi & Farhad Hosseinzadeh Lotfi & Masoud Sanei, 2020. "Hybrid efficiency measurement and target setting based on identifying defining hyperplanes of the PPS with negative data," Operational Research, Springer, vol. 20(2), pages 1055-1092, June.

    More about this item

    Keywords

    Financial Economics; Risk and Uncertainty;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aolpei:309925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/fevszcz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.