IDEAS home Printed from https://ideas.repec.org/a/aes/dbjour/v6y2015i2p14-23.html
   My bibliography  Save this article

Stock Market Prediction using Artificial Neural Networks. Case Study of TAL1T, Nasdaq OMX Baltic Stock

Author

Listed:
  • Hakob GRIGORYAN

    () (University of Economic Studies, Bucharest, Romania)

Abstract

Predicting financial market changes is an important issue in time series analysis, receiving an increasing attention in last two decades. The combined prediction model, based on artificial neural networks (ANNs) with principal component analysis (PCA) for financial time series forecasting is presented in this work. In the modeling step, technical analysis has been conducted to select technical indicators. Then PCA approach was applied to extract the principal components from the variables for the training step. Finally, the ANN-based model called NARX was used to train the data and perform the time series forecast. TAL1T stock of Nasdaq OMX Baltic stock exchange was used as a case study. The mean square error (MSE) measure was used to evaluate the performances of proposed model. The experimental results lead to the conclusion that the proposed model can be successfully used as an alternative method to standard statistical techniques for financial time series forecasting.

Suggested Citation

  • Hakob GRIGORYAN, 2015. "Stock Market Prediction using Artificial Neural Networks. Case Study of TAL1T, Nasdaq OMX Baltic Stock," Database Systems Journal, Academy of Economic Studies - Bucharest, Romania, vol. 6(2), pages 14-23, October.
  • Handle: RePEc:aes:dbjour:v:6:y:2015:i:2:p:14-23
    as

    Download full text from publisher

    File URL: http://www.dbjournal.ro/archive/20/20_2.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    2. Kuan, Chung-Ming & Liu, Tung, 1995. "Forecasting Exchange Rates Using Feedforward and Recurrent Neural Networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 347-364, Oct.-Dec..
    3. Olson, Dennis & Mossman, Charles, 2003. "Neural network forecasts of Canadian stock returns using accounting ratios," International Journal of Forecasting, Elsevier, vol. 19(3), pages 453-465.
    4. Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
    5. Wun-Hua Chen & Jen-Ying Shih & Soushan Wu, 2006. "Comparison of support-vector machines and back propagation neural networks in forecasting the six major Asian stock markets," International Journal of Electronic Finance, Inderscience Enterprises Ltd, vol. 1(1), pages 49-67.
    6. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aes:dbjour:v:6:y:2015:i:2:p:14-23. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Adela Bara). General contact details of provider: http://edirc.repec.org/data/aseeero.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.