IDEAS home Printed from https://ideas.repec.org/a/adp/jctbeb/v5y2017i1p1-5.html
   My bibliography  Save this article

Biodiesel Production from a Mixture of Vegetable Oils Using Marble Slurry Derived Heterogeneous Catalyst

Author

Listed:
  • Jharna Gupta
  • Madhu Agarwal

    (Department of Chemical Engineering, Malaviya National Institute of Technology, India)

Abstract

The catalytic activity of marble slurry derived calcined marble slurry and Hydroxyaptite (HAP) as heterogeneous catalyst has been studied for biodiesel synthesis. The developed catalysts characterized by the XRD and FTIR. Experimental results showed that biodiesel yield has been increased from 91% to 94% using calcined marble slurry and HAP as solid base catalyst respectively under reaction parameters such as reaction temperature 65 °C, reaction time 3hr, methanol to oil molar ratio 12:1 and catalyst concentration 4wt%. The solid base catalyst developed from marble slurry i.e. HAP shows superior catalytic activity for the trans esterification reaction of mixture of oils, which proposed that this waste could be possibly used as solid heterogeneous catalyst in biodiesel synthesis from mixture of edible and non edible oils.

Suggested Citation

  • Jharna Gupta & Madhu Agarwal, 2017. "Biodiesel Production from a Mixture of Vegetable Oils Using Marble Slurry Derived Heterogeneous Catalyst," Current Trends in Biomedical Engineering & Biosciences, Juniper Publishers Inc., vol. 5(1), pages 1-5, May.
  • Handle: RePEc:adp:jctbeb:v:5:y:2017:i:1:p:1-5
    DOI: 10.19080/CTBEB.2017.05.555651
    as

    Download full text from publisher

    File URL: https://juniperpublishers.com/ctbeb/pdf/CTBEB.MS.ID.555651.pdf
    Download Restriction: no

    File URL: https://juniperpublishers.com/ctbeb/CTBEB.MS.ID.555651.php
    Download Restriction: no

    File URL: https://libkey.io/10.19080/CTBEB.2017.05.555651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Farooq, Muhammad & Ramli, Anita & Naeem, Abdul, 2015. "Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones," Renewable Energy, Elsevier, vol. 76(C), pages 362-368.
    2. Chouhan, A.P. Singh & Sarma, A.K., 2011. "Modern heterogeneous catalysts for biodiesel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4378-4399.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vadery, Vinu & Cherikkallinmel, Sudha Kochiyil & Ramakrishnan, Resmi M. & Sugunan, Sankaran & Narayanan, Binitha N., 2019. "Green production of biodiesel over waste borosilicate glass derived catalyst and the process up-gradation in pilot scale," Renewable Energy, Elsevier, vol. 141(C), pages 1042-1053.
    2. Abdullah, Sharifah Hanis Yasmin Sayid & Hanapi, Nur Hanis Mohamad & Azid, Azman & Umar, Roslan & Juahir, Hafizan & Khatoon, Helena & Endut, Azizah, 2017. "A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1040-1051.
    3. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    4. Daimary, Niran & Boruah, Pankaj & Eldiehy, Khalifa S.H. & Pegu, Tapan & Bardhan, Pritam & Bora, Utpal & Mandal, Manabendra & Deka, Dhanapati, 2022. "Musa acuminata peel: A bioresource for bio-oil and by-product utilization as a sustainable source of renewable green catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 187(C), pages 450-462.
    5. Tan, Yie Hua & Abdullah, Mohammad Omar & Kansedo, Jibrail & Mubarak, Nabisab Mujawar & Chan, Yen San & Nolasco-Hipolito, Cirilo, 2019. "Biodiesel production from used cooking oil using green solid catalyst derived from calcined fusion waste chicken and fish bones," Renewable Energy, Elsevier, vol. 139(C), pages 696-706.
    6. Saba, Tony & Estephane, Jane & El Khoury, Bilal & El Khoury, Maroulla & Khazma, Mahmoud & El Zakhem, Henri & Aouad, Samer, 2016. "Biodiesel production from refined sunflower vegetable oil over KOH/ZSM5 catalysts," Renewable Energy, Elsevier, vol. 90(C), pages 301-306.
    7. Ambat, Indu & Srivastava, Varsha & Sillanpää, Mika, 2018. "Recent advancement in biodiesel production methodologies using various feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 356-369.
    8. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    9. Alsharifi, Mariam & Znad, Hussein & Hena, Sufia & Ang, Ming, 2017. "Biodiesel production from canola oil using novel Li/TiO2 as a heterogeneous catalyst prepared via impregnation method," Renewable Energy, Elsevier, vol. 114(PB), pages 1077-1089.
    10. Bet-Moushoul, Elsie & Farhadi, Khalil & Mansourpanah, Yaghoub & Molaie, Rahim & Forough, Mehrdad & Nikbakht, Ali Mohammad, 2016. "Development of novel Ag/bauxite nanocomposite as a heterogeneous catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 92(C), pages 12-21.
    11. Jyoti Rawat & Piyush Kumar Gupta & Soumya Pandit & Kanu Priya & Daksh Agarwal & Manu Pant & Vijay Kumar Thakur & Veena Pande, 2022. "Latest Expansions in Lipid Enhancement of Microalgae for Biodiesel Production: An Update," Energies, MDPI, vol. 15(4), pages 1-13, February.
    12. Mukhtar, Ahmad & Saqib, Sidra & Lin, Hongfei & Hassan Shah, Mansoor Ul & Ullah, Sami & Younas, Muhammad & Rezakazemi, Mashallah & Ibrahim, Muhammad & Mahmood, Abid & Asif, Saira & Bokhari, Awais, 2022. "Current status and challenges in the heterogeneous catalysis for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    13. Shemelis N. Gebremariam & Trine Hvoslef-Eide & Meseret T. Terfa & Jorge M. Marchetti, 2019. "Techno-Economic Performance of Different Technological Based Bio-Refineries for Biofuel Production," Energies, MDPI, vol. 12(20), pages 1-21, October.
    14. Lani, Nurul Saadiah & Ngadi, Norzita & Inuwa, Ibrahim Mohammed, 2020. "New route for the synthesis of silica-supported calcium oxide catalyst in biodiesel production," Renewable Energy, Elsevier, vol. 156(C), pages 1266-1277.
    15. Verma, Puneet & Sharma, M.P. & Dwivedi, Gaurav, 2016. "Impact of alcohol on biodiesel production and properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 319-333.
    16. Renas Hasan Saeed Saeed & Youssef Kassem & Hüseyin Çamur, 2019. "Effect of Biodiesel Mixture Derived from Waste Frying-Corn, Frying-Canola-Corn and Canola-Corn Cooking Oils with Various ‎Ages on Physicochemical Properties," Energies, MDPI, vol. 12(19), pages 1-26, September.
    17. Arumugam, A. & Ponnusami, V., 2019. "Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: An overview," Renewable Energy, Elsevier, vol. 131(C), pages 459-471.
    18. Maria Ameen & Mushtaq Ahmad & Muhammad Zafar & Mamoona Munir & Muhammad Mujtaba Mujtaba & Shazia Sultana & Rozina . & Samah Elsayed El-Khatib & Manzoore Elahi M. Soudagar & M. A. Kalam, 2022. "Prospects of Catalysis for Process Sustainability of Eco-Green Biodiesel Synthesis via Transesterification: A State-Of-The-Art Review," Sustainability, MDPI, vol. 14(12), pages 1-38, June.
    19. Khan, Ihtisham Wali & Naeem, Abdul & Farooq, Muhammad & Mahmood, Tahira & Ahmad, Bashir & Hamayun, Muhammad & Ahmad, Zahoor & Saeed, Tooba, 2020. "Catalytic conversion of spent frying oil into biodiesel over raw and 12-tungsto-phosphoric acid modified clay," Renewable Energy, Elsevier, vol. 155(C), pages 181-188.
    20. Sulaiman, Nur Fatin & Wan Abu Bakar, Wan Azelee & Toemen, Susilawati & Kamal, Norhasyimah Mohd & Nadarajan, Renugambaal, 2019. "In depth investigation of bi-functional, Cu/Zn/γ-Al2O3 catalyst in biodiesel production from low-grade cooking oil: Optimization using response surface methodology," Renewable Energy, Elsevier, vol. 135(C), pages 408-416.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adp:jctbeb:v:5:y:2017:i:1:p:1-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Robert Thomas (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.