IDEAS home Printed from https://ideas.repec.org/a/adp/ijesnr/v9y2018i2p89-95.html
   My bibliography  Save this article

Feasibility of Bioethanol Production Potential and Optimization from Selected Lignocellulosic Waste Biomass

Author

Listed:
  • Demis Zelelew
  • Hadush Gebrehiwot

    (College of Natural and Computational Sciences, Wachemo University, Ethiopia)

  • Wondimu Fikre

    (Ministry of Mining & Energy of Hadiya Zone, Ethiopia)

Abstract

Bioenergy future depends on an increased share of renewable energy, especially in developing countries. Bioethanol is one of the most important alternative renewable energy sources that substitute the fossil fuels. Bioconversion of lignocelluloses based biomass to ethanol is significantly hindered by the structural and chemical complexity of biomass, which makes these materials a challenge to be used as feed stocks for cellulosic ethanol production. Lignocelluloses waste has a content of cellulose and hemicelluloses, which make it suitable as fermentation substrate when hydrolyzed. The objective of this work was to evaluate the feasibility of ethanol production and optimization from Lignocelluloses waste by using commercial bakery yeast, i.e., S. cereviciae.

Suggested Citation

  • Demis Zelelew & Hadush Gebrehiwot & Wondimu Fikre, 2018. "Feasibility of Bioethanol Production Potential and Optimization from Selected Lignocellulosic Waste Biomass," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 9(2), pages 89-95, March.
  • Handle: RePEc:adp:ijesnr:v:9:y:2018:i:2:p:89-95
    DOI: 10.19080/IJESNR.2018.09.555765
    as

    Download full text from publisher

    File URL: https://juniperpublishers.com/ijesnr/pdf/IJESNR.MS.ID.555765.pdf
    Download Restriction: no

    File URL: https://juniperpublishers.com/ijesnr/IJESNR.MS.ID.555765.php
    Download Restriction: no

    File URL: https://libkey.io/10.19080/IJESNR.2018.09.555765?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Malça, João & Freire, Fausto, 2006. "Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): Assessing the implications of allocation," Energy, Elsevier, vol. 31(15), pages 3362-3380.
    2. Shapouri, Hosein & Salassi, Michael, 2006. "The Economic Feasibility of Ethanol Production from Sugar in the United States," Miscellaneous Publications 322769, United States Department of Agriculture, Economic Research Service.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koçar, Günnur & Civaş, Nilgün, 2013. "An overview of biofuels from energy crops: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 900-916.
    2. Manochio, C. & Andrade, B.R. & Rodriguez, R.P. & Moraes, B.S., 2017. "Ethanol from biomass: A comparative overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 743-755.
    3. Carneiro, Maria Luisa N.M. & Pradelle, Florian & Braga, Sergio L. & Gomes, Marcos Sebastião P. & Martins, Ana Rosa F.A. & Turkovics, Franck & Pradelle, Renata N.C., 2017. "Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 632-653.
    4. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    5. Chen, G.Q. & Yang, Q. & Zhao, Y.H., 2011. "Renewability of wind power in China: A case study of nonrenewable energy cost and greenhouse gas emission by a plant in Guangxi," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2322-2329, June.
    6. Prasad, Ravita D. & Raturi, Atul, 2018. "Low-carbon measures for Fiji's land transport energy system," Utilities Policy, Elsevier, vol. 54(C), pages 132-147.
    7. Mohammed, Y.S. & Mokhtar, A.S. & Bashir, N. & Saidur, R., 2013. "An overview of agricultural biomass for decentralized rural energy in Ghana," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 15-25.
    8. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2016. "Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 850-866.
    9. Liu, Xiongmin & Ito, Shunsuke & Wada, Yuji, 2015. "Oxidation characteristic and products of ETBE (ethyl tert-butyl ether)," Energy, Elsevier, vol. 82(C), pages 184-192.
    10. Kyriakou, Maria & Chatziiona, Vasiliki K. & Costa, Costas N. & Kallis, Michalis & Koutsokeras, Loukas & Constantinides, Georgios & Koutinas, Michalis, 2019. "Biowaste-based biochar: A new strategy for fermentative bioethanol overproduction via whole-cell immobilization," Applied Energy, Elsevier, vol. 242(C), pages 480-491.
    11. Shao, Ling & Chen, G.Q., 2016. "Renewability assessment of a production system: Based on embodied energy as emergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 380-392.
    12. Castillo Santiago, York & Martínez González, Aldemar & Venturini, Osvaldo J. & Sphaier, Leandro A. & Ocampo Batlle, Eric A., 2022. "Energetic and environmental assessment of oil sludge use in a gasifier/gas microturbine system," Energy, Elsevier, vol. 244(PB).
    13. Khoshnevisan, Benyamin & Shafiei, Marzieh & Rajaeifar, Mohammad Ali & Tabatabaei, Meisam, 2016. "Biogas and bioethanol production from pinewood pre-treated with steam explosion and N-methylmorpholine-N-oxide (NMMO): A comparative life cycle assessment approach," Energy, Elsevier, vol. 114(C), pages 935-950.
    14. Yan, Xiaoyu & Crookes, Roy J., 2009. "Life cycle analysis of energy use and greenhouse gas emissions for road transportation fuels in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2505-2514, December.
    15. Pamella Inácio Moreira & Josinaldo de Oliveira Dias & Gustavo de Castro Xavier & Carlos Maurício Vieira & Jonas Alexandre & Sergio Neves Monteiro & Rogério Pinto Ribeiro & Afonso Rangel Garcez de Azev, 2022. "Ornamental Stone Processing Waste Incorporated in the Production of Mortars: Technological Influence and Environmental Performance Analysis," Sustainability, MDPI, vol. 14(10), pages 1-24, May.
    16. Prestipino, Mauro & Salmeri, Fabio & Cucinotta, Filippo & Galvagno, Antonio, 2021. "Thermodynamic and environmental sustainability analysis of electricity production from an integrated cogeneration system based on residual biomass: A life cycle approach," Applied Energy, Elsevier, vol. 295(C).
    17. Elisa Portale, 2012. "Socio-Economic Sustainability of Biofuel Production in Sub-Saharan Africa: Evidence from a Jatropha Outgrower Model in Rural Tanzania," CID Working Papers 56, Center for International Development at Harvard University.
    18. Malça, João & Freire, Fausto, 2011. "Life-cycle studies of biodiesel in Europe: A review addressing the variability of results and modeling issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 338-351, January.
    19. Segovia, José J. & Villamañán, Rosa M. & Martín, M. Carmen & Chamorro, César R. & Villamañán, Miguel A., 2010. "Thermodynamic characterization of bio-fuels: Excess functions for binary mixtures containing ETBE and hydrocarbons," Energy, Elsevier, vol. 35(2), pages 759-763.
    20. Malça, João & Coelho, António & Freire, Fausto, 2014. "Environmental life-cycle assessment of rapeseed-based biodiesel: Alternative cultivation systems and locations," Applied Energy, Elsevier, vol. 114(C), pages 837-844.

    More about this item

    Keywords

    earth and environment journals; environment journals; open access environment journals; peer reviewed environmental journals; open access; juniper publishers; ournal of Environmental Sciences; juniper publishers journals ; juniper publishers reivew;
    All these keywords.

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adp:ijesnr:v:9:y:2018:i:2:p:89-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Robert Thomas (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.