IDEAS home Printed from https://ideas.repec.org/a/abq/ijist1/v6y2024i5p236-247.html
   My bibliography  Save this article

An Aggregated Approach Towards NILM on ACS-F2 Using Machine Learning

Author

Listed:
  • Arsalan Ali Mujtaba, Sarmad Rafique, Gul Muhammad Khan

    (Department of Electrical Engineering University of Engineering and Technology Peshawar, Pakistan. Department of Computer Systems Engineering University of Engineering and Technology Peshawar, Pakistan)

Abstract

The Energy Sector across the globe is experiencing rapid growth, driven by Internet of Things (IoT) integration technologies and advanced algorithms. This evolution is particularly evident in the ongoing competition among tech companies in the development of smart metering solutions. Despite these advancements, a critical challenge persists— the lack of definitive technical protocols for monitoring the total usage or power signatures of individual appliances, referred to as non-intrusive load monitoring (NILM) in aggregate. While intrusive load monitoring (ILM) provides very accurate and thorough insights, non-intrusive methods are essential to address losses specially in residential areas. In this research a groundbreaking approach is proposed towards handling NILM problems by analyzing and aggregating the load patterns of four key appliances of daily use, namely the Coffee Machine, Fridge, Kettle, and Laptop from the ACS-F2 dataset. The generated aggregated dataset, is systematically combined using electrical formulations to yield the desired data which reflects the simultaneous operation of multiple appliances, this has been explored for the first time in the known literature. The proposed dataset contains around 6750 aggregated appliance load patterns for both training and testing. Furthermore, multiple Time Series Classifiers (TSC) were gauged using a suite of evaluation metrics, on the proposed dataset and an accuracy of 92.1% was achieved by the CATCH22 classifier.

Suggested Citation

  • Arsalan Ali Mujtaba, Sarmad Rafique, Gul Muhammad Khan, 2024. "An Aggregated Approach Towards NILM on ACS-F2 Using Machine Learning," International Journal of Innovations in Science & Technology, 50sea, vol. 6(5), pages 236-247, May.
  • Handle: RePEc:abq:ijist1:v:6:y:2024:i:5:p:236-247
    as

    Download full text from publisher

    File URL: https://journal.50sea.com/index.php/IJIST/article/view/781/1377
    Download Restriction: no

    File URL: https://journal.50sea.com/index.php/IJIST/article/view/781
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antonio Ruano & Alvaro Hernandez & Jesus Ureña & Maria Ruano & Juan Garcia, 2019. "NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review," Energies, MDPI, vol. 12(11), pages 1-29, June.
    2. Cristina Puente & Rafael Palacios & Yolanda González-Arechavala & Eugenio Francisco Sánchez-Úbeda, 2020. "Non-Intrusive Load Monitoring (NILM) for Energy Disaggregation Using Soft Computing Techniques," Energies, MDPI, vol. 13(12), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inoussa Laouali & Antonio Ruano & Maria da Graça Ruano & Saad Dosse Bennani & Hakim El Fadili, 2022. "Non-Intrusive Load Monitoring of Household Devices Using a Hybrid Deep Learning Model through Convex Hull-Based Data Selection," Energies, MDPI, vol. 15(3), pages 1-22, February.
    2. Hari Prasad Devarapalli & V. S. S. Siva Sarma Dhanikonda & Sitarama Brahmam Gunturi, 2020. "Non-Intrusive Identification of Load Patterns in Smart Homes Using Percentage Total Harmonic Distortion," Energies, MDPI, vol. 13(18), pages 1-15, September.
    3. Patricia Franco & José M. Martínez & Young-Chon Kim & Mohamed A. Ahmed, 2022. "A Cyber-Physical Approach for Residential Energy Management: Current State and Future Directions," Sustainability, MDPI, vol. 14(8), pages 1-33, April.
    4. Mingzhi Yang & Yue Liu & Quanlong Liu, 2021. "Nonintrusive Residential Electricity Load Decomposition Based on Transfer Learning," Sustainability, MDPI, vol. 13(12), pages 1-11, June.
    5. Amitay Kligman & Arbel Yaniv & Yuval Beck, 2023. "Energy Disaggregation of Type I and II Loads by Means of Birch Clustering and Watchdog Timers," Energies, MDPI, vol. 16(7), pages 1-21, March.
    6. Pusceddu, Gabriella & Manca, Simone & Massidda, Luca, 2025. "Fine-tuning non-intrusive load monitoring model through user interaction: A practical approach to appliance recognition with limited labeled data," Applied Energy, Elsevier, vol. 391(C).
    7. Hwan Kim & Sungsu Lim, 2021. "Temporal Patternization of Power Signatures for Appliance Classification in NILM," Energies, MDPI, vol. 14(10), pages 1-17, May.
    8. André Eugenio Lazzaretti & Douglas Paulo Bertrand Renaux & Carlos Raimundo Erig Lima & Bruna Machado Mulinari & Hellen Cristina Ancelmo & Elder Oroski & Fabiana Pöttker & Robson Ribeiro Linhares & Luc, 2020. "A Multi-Agent NILM Architecture for Event Detection and Load Classification," Energies, MDPI, vol. 13(17), pages 1-35, August.
    9. Hao Ma & Juncheng Jia & Xinhao Yang & Weipeng Zhu & Hong Zhang, 2021. "MC-NILM: A Multi-Chain Disaggregation Method for NILM," Energies, MDPI, vol. 14(14), pages 1-14, July.
    10. Xi He & Heng Dong & Wanli Yang & Jun Hong, 2022. "A Novel Denoising Auto-Encoder-Based Approach for Non-Intrusive Residential Load Monitoring," Energies, MDPI, vol. 15(6), pages 1-15, March.
    11. Camilo Carrillo & Eloy Díaz Dorado & José Cidrás Pidre & Julio Garrido Campos & Diego San Facundo López & Luiz A. Lisboa Cardoso & Cristina I. Martínez Castañeda & José F. Sánchez Rúa, 2023. "Detailed Energy Analysis of a Sheet-Metal-Forming Press from Electrical Measurements," Energies, MDPI, vol. 16(19), pages 1-17, October.
    12. Rodríguez-Cuenca, Francisco & Sánchez-Úbeda, Eugenio Francisco & Portela, José & Muñoz, Antonio & Guizien, Víctor & Santiago, Andrea Veiga & González, Alicia Mateo, 2025. "Television usage recommendations for energy efficiency: A probabilistic methodology based on the Wasserstein distance," Energy, Elsevier, vol. 322(C).
    13. Sarra Houidi & Dominique Fourer & François Auger & Houda Ben Attia Sethom & Laurence Miègeville, 2021. "Comparative Evaluation of Non-Intrusive Load Monitoring Methods Using Relevant Features and Transfer Learning," Energies, MDPI, vol. 14(9), pages 1-28, May.
    14. Georgios Yiasoumas & Lazar Berbakov & Valentina Janev & Alessandro Asmundo & Eneko Olabarrieta & Andrea Vinci & Giovanni Baglietto & George E. Georghiou, 2023. "Key Aspects and Challenges in the Implementation of Energy Communities," Energies, MDPI, vol. 16(12), pages 1-24, June.
    15. Xiao-Yu Zhang & Stefanie Kuenzel & José-Rodrigo Córdoba-Pachón & Chris Watkins, 2020. "Privacy-Functionality Trade-Off: A Privacy-Preserving Multi-Channel Smart Metering System," Energies, MDPI, vol. 13(12), pages 1-30, June.
    16. Abayomi A. Adebiyi & Mathew Habyarimana, 2025. "Systematic Review of Optimization Methodologies for Smart Home Energy Management Systems," Energies, MDPI, vol. 18(19), pages 1-28, October.
    17. Mazen Bouchur & Andreas Reinhardt, 2025. "Synergistic Non-Intrusive Load Monitoring: Dual-Model Training and Inference for Improved Load Disaggregation Prediction," Energies, MDPI, vol. 18(3), pages 1-15, January.
    18. Yichao Xie & Bowen Zhou & Zhenyu Wang & Bo Yang & Liaoyi Ning & Yanhui Zhang, 2023. "Industrial Carbon Footprint (ICF) Calculation Approach Based on Bayesian Cross-Validation Improved Cyclic Stacking," Sustainability, MDPI, vol. 15(19), pages 1-35, September.
    19. Cheng, Ziwei & Yao, Zhen, 2024. "A novel approach to predict buildings load based on deep learning and non-intrusive load monitoring technique, toward smart building," Energy, Elsevier, vol. 312(C).
    20. Fernando Sánchez Lasheras, 2021. "Predicting the Future-Big Data and Machine Learning," Energies, MDPI, vol. 14(23), pages 1-2, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:abq:ijist1:v:6:y:2024:i:5:p:236-247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Iqra Nazeer (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.