IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p608-d1578991.html
   My bibliography  Save this article

Synergistic Non-Intrusive Load Monitoring: Dual-Model Training and Inference for Improved Load Disaggregation Prediction

Author

Listed:
  • Mazen Bouchur

    (Department of Informatics, Technische Universität Clausthal, 38678 Clausthal-Zellerfeld, Germany)

  • Andreas Reinhardt

    (Department of Informatics, Technische Universität Clausthal, 38678 Clausthal-Zellerfeld, Germany)

Abstract

Load disaggregation is the process of identifying an individual appliance’s power demand within aggregate electrical load data. Virtually all recently proposed disaggregation methods are based on neural networks, thanks to their superior performance. Their achievable accuracy is, however, often limited by the quality of the data that have been used to train the underlying neural networks. In particular, if electrical appliances exhibit vastly differing temporal schedules and operational modes, their heterogeneous power consumption data can poison the disaggregation models and thus lead to a degraded overall accuracy. This paper presents a novel load disaggregation approach that relies on the use of multiple disaggregation models. We use a clustering method to partition training data by their power consumption patterns, allowing our approach to train separate models for appliance data exhibiting similar electricity consumption patterns. During disaggregation, our scheme selects the model that is closest to the appliance’s power consumption pattern, thereby leveraging the most fitting model for each specific instance. We demonstrate how our method surpasses the accuracy of the individual models designated for each cluster, while simultaneously improving upon the baseline model’s performance. When applied to the widely used ECO dataset, our approach achieves an average improvement of 13% in disaggregation accuracy over the use of a single baseline model.

Suggested Citation

  • Mazen Bouchur & Andreas Reinhardt, 2025. "Synergistic Non-Intrusive Load Monitoring: Dual-Model Training and Inference for Improved Load Disaggregation Prediction," Energies, MDPI, vol. 18(3), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:608-:d:1578991
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/608/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/608/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patrick Huber & Alberto Calatroni & Andreas Rumsch & Andrew Paice, 2021. "Review on Deep Neural Networks Applied to Low-Frequency NILM," Energies, MDPI, vol. 14(9), pages 1-34, April.
    2. Antonio Ruano & Alvaro Hernandez & Jesus Ureña & Maria Ruano & Juan Garcia, 2019. "NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review," Energies, MDPI, vol. 12(11), pages 1-29, June.
    3. Teichgraeber, Holger & Brandt, Adam R., 2019. "Clustering methods to find representative periods for the optimization of energy systems: An initial framework and comparison," Applied Energy, Elsevier, vol. 239(C), pages 1283-1293.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. İsmail Hakkı Çavdar & Vahit Feryad, 2021. "Efficient Design of Energy Disaggregation Model with BERT-NILM Trained by AdaX Optimization Method for Smart Grid," Energies, MDPI, vol. 14(15), pages 1-21, July.
    2. Everton Luiz de Aguiar & André Eugenio Lazzaretti & Bruna Machado Mulinari & Daniel Rodrigues Pipa, 2021. "Scattering Transform for Classification in Non-Intrusive Load Monitoring," Energies, MDPI, vol. 14(20), pages 1-20, October.
    3. Papageorgiou, Petros G. & Christoforidis, Georgios C. & Bouhouras, Aggelos S., 2025. "NILM in high frequency domain: A critical review on recent trends and practical challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    4. Inoussa Laouali & Antonio Ruano & Maria da Graça Ruano & Saad Dosse Bennani & Hakim El Fadili, 2022. "Non-Intrusive Load Monitoring of Household Devices Using a Hybrid Deep Learning Model through Convex Hull-Based Data Selection," Energies, MDPI, vol. 15(3), pages 1-22, February.
    5. Hao Ma & Juncheng Jia & Xinhao Yang & Weipeng Zhu & Hong Zhang, 2021. "MC-NILM: A Multi-Chain Disaggregation Method for NILM," Energies, MDPI, vol. 14(14), pages 1-14, July.
    6. Kenjiro Yagi & Ramteen Sioshansi, 2023. "Simplifying capacity planning for electricity systems with hydroelectric and renewable generation," Computational Management Science, Springer, vol. 20(1), pages 1-28, December.
    7. Merrick, James H. & Bistline, John E.T. & Blanford, Geoffrey J., 2024. "On representation of energy storage in electricity planning models," Energy Economics, Elsevier, vol. 136(C).
    8. Cristina Puente & Rafael Palacios & Yolanda González-Arechavala & Eugenio Francisco Sánchez-Úbeda, 2020. "Non-Intrusive Load Monitoring (NILM) for Energy Disaggregation Using Soft Computing Techniques," Energies, MDPI, vol. 13(12), pages 1-20, June.
    9. Krzysztof Dowalla & Piotr Bilski & Robert Łukaszewski & Augustyn Wójcik & Ryszard Kowalik, 2022. "Application of the Time-Domain Signal Analysis for Electrical Appliances Identification in the Non-Intrusive Load Monitoring," Energies, MDPI, vol. 15(9), pages 1-20, May.
    10. Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).
    11. Bunnak, Phumthep & Coniglio, Stefano & Galelli, Stefano, 2025. "Bridging theory and practice: Efficiently solving the unit commitment problem in production cost models," Energy, Elsevier, vol. 322(C).
    12. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    13. Tian, Zhe & Wang, Yi & Li, Xiaoyuan & Wen, Li & Niu, Jide & Lu, Yakai, 2024. "Typical daily scenario extraction method based on key features to promote building renewable energy system optimization efficiency," Renewable Energy, Elsevier, vol. 236(C).
    14. Prina, Matteo Giacomo & Nastasi, Benedetto & Groppi, Daniele & Misconel, Steffi & Garcia, Davide Astiaso & Sparber, Wolfram, 2022. "Comparison methods of energy system frameworks, models and scenario results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Wang, Wei & Cova, Gregorio & Zio, Enrico, 2022. "A clustering-based framework for searching vulnerabilities in the operation dynamics of Cyber-Physical Energy Systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    16. Veronica Piccialli & Antonio M. Sudoso, 2021. "Improving Non-Intrusive Load Disaggregation through an Attention-Based Deep Neural Network," Energies, MDPI, vol. 14(4), pages 1-16, February.
    17. Gengsheng He & Yu Huang & Ying Zhang & Yuanzhe Zhu & Yuan Leng & Nan Shang & Jincan Zeng & Zengxin Pu, 2025. "Hybrid Transformer–Convolutional Neural Network Approach for Non-Intrusive Load Analysis in Industrial Processes," Energies, MDPI, vol. 18(10), pages 1-17, May.
    18. Yichao Xie & Bowen Zhou & Zhenyu Wang & Bo Yang & Liaoyi Ning & Yanhui Zhang, 2023. "Industrial Carbon Footprint (ICF) Calculation Approach Based on Bayesian Cross-Validation Improved Cyclic Stacking," Sustainability, MDPI, vol. 15(19), pages 1-35, September.
    19. Pilotti, Lorenzo & Castelli, Alessandro Francesco & Martelli, Emanuele, 2025. "Optimal design of fully renewable and dispatchable power plants with hydrogen seasonal storage," Renewable Energy, Elsevier, vol. 241(C).
    20. Li, Dandan & Li, Jiangfeng & Zeng, Xin & Stankovic, Vladimir & Stankovic, Lina & Xiao, Changjiang & Shi, Qingjiang, 2023. "Transfer learning for multi-objective non-intrusive load monitoring in smart building," Applied Energy, Elsevier, vol. 329(C).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:608-:d:1578991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.