Advanced Search
MyIDEAS: Login

Citations for "Efficient High-Dimensional Importance Sampling"

by Jean-Francois Richard

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window
  1. Heiss, Florian & Winschel, Viktor, 2008. "Likelihood approximation by numerical integration on sparse grids," Journal of Econometrics, Elsevier, vol. 144(1), pages 62-80, May.
  2. Tore Selland Kleppe & Jun Yu & Hans J. Skaug, 2011. "Simulated Maximum Likelihood Estimation for Latent Diffusion Models," Working Papers CoFie-04-2011, Sim Kee Boon Institute for Financial Economics.
  3. Tore Selland Kleppe & Hans J. Skaug & Jun Yu, 2009. "Simulated Maximum Likelihood Estimation of Continuous Time Stochastic Volatility Models," Working Papers CoFie-09-2009, Sim Kee Boon Institute for Financial Economics.
  4. Alvaro Escribano & Szabolcs Blazsek, 2012. "Patents, secret innovations and firm's rate of return : differential effects of the innovation leader," Economics Working Papers we1202, Universidad Carlos III, Departamento de Economía.
  5. Moura, Guilherme V. & Richard, Jean-François & Liesenfeld, Roman, 2007. "Dynamic Panel Probit Models for Current Account Reversals and their Efficient Estimation," Economics Working Papers 2007,11, Christian-Albrechts-University of Kiel, Department of Economics.
  6. Tsyplakov Alexander, 2010. "The links between inflation and inflation uncertainty at the longer horizon," EERC Working Paper Series 10/09e, EERC Research Network, Russia and CIS.
  7. McCAUSLAND, William, 2008. "The Hessian Method (Highly Efficient State Smoothing, In a Nutshell)," Cahiers de recherche 2008-03, Universite de Montreal, Departement de sciences economiques.
  8. Hautsch, Nikolaus & Ou, Yangguoyi, 2009. "Analyzing interest rate risk: Stochastic volatility in the term structure of government bond yields," CFS Working Paper Series 2009/03, Center for Financial Studies (CFS).
  9. Steffen Henzel & Malte Rengel, 2013. "Dimensions of macroeconomic uncertainty: A common factor analysis," Ifo Working Paper Series Ifo Working Paper No. 167, Ifo Institute for Economic Research at the University of Munich.
  10. Bretó, Carles, 2014. "On idiosyncratic stochasticity of financial leverage effects," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 20-26.
  11. Szabolcs Blazsek & Alvaro Escribano, 2010. "Knowledge spillovers in U.S. patents: A dynamic patent intensity model with secret common innovation factors," Post-Print hal-00732533, HAL.
  12. Jung, Robert & Liesenfeld, Roman & Richard, Jean-François, 2008. "Dynamic Factor Models for Multivariate Count Data: An Application to Stock-Market Trading Activity," Economics Working Papers 2008,12, Christian-Albrechts-University of Kiel, Department of Economics.
  13. Luati, Alessandra & Proietti, Tommaso, 2012. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Working Papers 02 BAWP, University of Sydney Business School, Discipline of Business Analytics.
  14. Liesenfeld, Roman & Richard, Jean-François, 2010. "Efficient estimation of probit models with correlated errors," Journal of Econometrics, Elsevier, vol. 156(2), pages 367-376, June.
  15. Christian Brinch, 2012. "Efficient simulated maximum likelihood estimation through explicitly parameter dependent importance sampling," Computational Statistics, Springer, vol. 27(1), pages 13-28, March.
  16. Hautsch, Nikolaus, 2007. "Capturing common components in high-frequency financial time series: A multivariate stochastic multiplicative error model," CFS Working Paper Series 2007/25, Center for Financial Studies (CFS).
  17. Roman Liesenfeld & Guilherme Valle Moura & Jean-François Richard, 2010. "Determinants and Dynamics of Current Account Reversals: An Empirical Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 486-517, 08.
  18. Andreasen, Martin & Meldrum, Andrew, 2013. "Likelihood inference in non-linear term structure models: the importance of the lower bound," Bank of England working papers 481, Bank of England.
  19. Andreas Ziegler, 2010. "Z-Tests in Multinomial Probit Models under Simulated Maximum Likelihood Estimation: Some Small Sample Properties," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), Justus-Liebig University Giessen, Department of Statistics and Economics, vol. 230(5), pages 630-652, October.
  20. Tsyplakov, Alexander, 2010. "The links between inflation and inflation uncertainty at the longer horizon," MPRA Paper 26908, University Library of Munich, Germany.
  21. Bauwens, L. & Galli, F., 2009. "Efficient importance sampling for ML estimation of SCD models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1974-1992, April.
  22. Szabolcs Blazsek & Álvaro Escribano, 2014. "Propensity to patent, R&D and market competition : dynamic spillovers of innovation leaders and followers," Economics Working Papers we1412, Universidad Carlos III, Departamento de Economía.
  23. Christian N. Brinch, 2008. "Simulated Maximum Likelihood using Tilted Importance Sampling," Discussion Papers 540, Research Department of Statistics Norway.
  24. Liesenfeld, Roman & Richard, Jean-François, 2010. "The dynamic invariant multinomial probit model: Identification, pretesting and estimation," Journal of Econometrics, Elsevier, vol. 155(2), pages 117-127, April.
  25. Andre A. Monteiro, 2009. "The econometrics of randomly spaced financial data: a survey," Statistics and Econometrics Working Papers ws097924, Universidad Carlos III, Departamento de Estadística y Econometría.
  26. Roman Liesenfeld & Guilherme V. Moura & Jean-François Richard & Hariharan Dharmarajan, 2013. "Efficient Likelihood Evaluation of State-Space Representations," Review of Economic Studies, Oxford University Press, vol. 80(2), pages 538-567.
  27. Galli, Fausto, 2014. "Stochastic conditonal range, a latent variable model for financial volatility," MPRA Paper 54030, University Library of Munich, Germany.
  28. Andreasen, Martin M., 2011. "Non-linear DSGE models and the optimized central difference particle filter," Journal of Economic Dynamics and Control, Elsevier, vol. 35(10), pages 1671-1695, October.
  29. Yu, Jun, 2012. "A semiparametric stochastic volatility model," Journal of Econometrics, Elsevier, vol. 167(2), pages 473-482.
  30. Andr� A. Monteiro, 2008. "Parameter Driven Multi-state Duration Models: Simulated vs. Approximate Maximum Likelihood Estimation," Tinbergen Institute Discussion Papers 08-021/2, Tinbergen Institute.
  31. Mesters, G. & Koopman, S.J., 2014. "Generalized dynamic panel data models with random effects for cross-section and time," Journal of Econometrics, Elsevier, vol. 180(2), pages 127-140.
  32. Martin Burda & Roman Liesenfeld & Jean-Francois Richard, 2008. "Bayesian Analysis of a Probit Panel Data Model with Unobserved Individual Heterogeneity and Autocorrelated Errors," Working Papers tecipa-321, University of Toronto, Department of Economics.
  33. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
  34. Kleppe, Tore Selland & Liesenfeld, Roman, 2011. "Efficient high-dimensional importance sampling in mixture frameworks," Economics Working Papers 2011,11, Christian-Albrechts-University of Kiel, Department of Economics.
  35. Galli, Fausto, 2014. "Stochastic conditonal range, a latent variable model for financial volatility," MPRA Paper 54841, University Library of Munich, Germany.
  36. Pastorello, S. & Rossi, E., 2010. "Efficient importance sampling maximum likelihood estimation of stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2753-2762, November.
  37. Siem Jan Koopman & Andre Lucas & Marcel Scharth, 2012. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," Tinbergen Institute Discussion Papers 12-020/4, Tinbergen Institute.
  38. Wu, Xin-Yu & Ma, Chao-Qun & Wang, Shou-Yang, 2012. "Warrant pricing under GARCH diffusion model," Economic Modelling, Elsevier, vol. 29(6), pages 2237-2244.
  39. Hafner, Christian M. & Manner, Hans, 2008. "Dynamic stochastic copula models: Estimation, inference and applications," Research Memorandum 043, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  40. Koopman, Siem Jan & Shephard, Neil & Creal, Drew, 2009. "Testing the assumptions behind importance sampling," Journal of Econometrics, Elsevier, vol. 149(1), pages 2-11, April.
  41. Kleppe, Tore Selland & Liesenfeld, Roman, 2014. "Efficient importance sampling in mixture frameworks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 449-463.
  42. Liesenfeld, Roman & Richard, Jean-François, 2008. "Improving MCMC, using efficient importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 272-288, December.
  43. Kleppe, Tore Selland & Skaug, Hans Julius, 2012. "Fitting general stochastic volatility models using Laplace accelerated sequential importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3105-3119.
  44. Geert Mesters & Siem Jan Koopman, 2012. "Generalized Dynamic Panel Data Models with Random Effects for Cross-Section and Time," Tinbergen Institute Discussion Papers 12-009/4, Tinbergen Institute, revised 18 Mar 2014.
  45. David N. DeJong & Hariharan Dharmarajan & Roman Liesenfeld & Jean-Francois Richard, 2008. "Exploiting Non-Linearities in GDP Growth for Forecasting and Anticipating Regime Changes," Working Papers 367, University of Pittsburgh, Department of Economics, revised Sep 2008.
  46. Kleppe, Tore Selland & Skaug, Hans J., 2008. "Simulated maximum likelihood for general stochastic volatility models: a change of variable approach," MPRA Paper 12022, University Library of Munich, Germany.
  47. McCausland, William J., 2012. "The HESSIAN method: Highly efficient simulation smoothing, in a nutshell," Journal of Econometrics, Elsevier, vol. 168(2), pages 189-206.
  48. Siem Jan Koopman & Rutger Lit & André Lucas, 2014. "The Dynamic Skellam Model with Applications," Tinbergen Institute Discussion Papers 14-032/IV/DSF73, Tinbergen Institute.
  49. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," CORE Discussion Papers 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  50. Almeida, Carlos & Czado, Claudia, 2012. "Efficient Bayesian inference for stochastic time-varying copula models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1511-1527.