Advanced Search
MyIDEAS: Login

Efficient importance sampling for ML estimation of SCD models

Contents:

Author Info

  • Luc, BAUWENS

    (UNIVERSITE CATHOLIQUE DE LOUVAIN, Department of Economics)

  • Fausto Galli

    (Swiss Finance Institute of Lugano)

Abstract

The evaluation of the likelihood function of the stochastic conditional duration model requires to compute an integral that has the dimension of the sample size. We apply the efficient importance sampling method for computing this integral. We compare EIS-based ML estimation with QML estimation based on the Kalman filter. We find that EIS-ML estimation is more precise statistically, at a cost of an acceptable loss of quickness of computations. We illustrate this with simulated and real data. We show also that the EIS-ML method is easy to apply to extensions of the SCD model.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://sites.uclouvain.be/econ/DP/IRES/2007-32.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Université catholique de Louvain, Département des Sciences Economiques in its series Discussion Papers (ECON - Département des Sciences Economiques) with number 2007032.

as in new window
Length: 33
Date of creation: 01 Sep 2007
Date of revision:
Handle: RePEc:ctl:louvec:2007032

Contact details of provider:
Postal: Place Montesquieu 3, 1348 Louvain-la-Neuve (Belgium)
Fax: +32 10473945
Email:
Web page: http://www.uclouvain.be/econ
More information through EDIRC

Related research

Keywords: Stochastic conditional duration; importance sampling;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
  2. Strickland, Chris M. & Forbes, Catherine S. & Martin, Gael M., 2006. "Bayesian analysis of the stochastic conditional duration model," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2247-2267, May.
  3. Dingan Feng, 2004. "Stochastic Conditional Duration Models with "Leverage Effect" for Financial Transaction Data," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(3), pages 390-421.
  4. Ghysels, E. & Harvey, A. & Renault, E., 1996. "Stochastic Volatility," Cahiers de recherche 9613, Universite de Montreal, Departement de sciences economiques.
  5. Liesenfeld, Roman & Richard, Jean-François, 2008. "Improving MCMC, using efficient importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 272-288, December.
  6. Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
  7. BAUWENS, Luc & HAUTSCH, Nikolaus, . "Stochastic conditional intensity processes," CORE Discussion Papers RP -1937, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  8. BAUWENS, Luc & ROMBOUTS, Jeroen V.K., . "Econometrics," CORE Discussion Papers RP -1713, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    • Rombouts, Jeroen V. K. & Bauwens, Luc, 2004. "Econometrics," Papers 2004,33, Humboldt-Universität Berlin, Center for Applied Statistics and Economics (CASE).
  9. Richard, Jean-Francois & Zhang, Wei, 2007. "Efficient high-dimensional importance sampling," Journal of Econometrics, Elsevier, vol. 141(2), pages 1385-1411, December.
  10. Luc Bauwens & David Veredas, 2004. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," ULB Institutional Repository 2013/136234, ULB -- Universite Libre de Bruxelles.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Kleppe, Tore Selland & Liesenfeld, Roman, 2011. "Efficient high-dimensional importance sampling in mixture frameworks," Economics Working Papers 2011,11, Christian-Albrechts-University of Kiel, Department of Economics.
  2. Andre A. Monteiro, 2009. "The econometrics of randomly spaced financial data: a survey," Statistics and Econometrics Working Papers ws097924, Universidad Carlos III, Departamento de Estadística y Econometría.
  3. Zhongxian Men & Adam W. Kolkiewicz & Tony S. Wirjanto, 2013. "Bayesian Inference of Asymmetric Stochastic Conditional Duration Models," Working Paper Series 28_13, The Rimini Centre for Economic Analysis.
  4. Fok, Dennis & Paap, Richard & Franses, Philip Hans, 2012. "Modeling dynamic effects of promotion on interpurchase times," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3055-3069.
  5. Tore Selland KLEPPE & Jun YU & Hans J. SKAUG, 2009. "Stimulated Maximum Likelihood Estimation of Continuous Time Stochastic Volatility Models," Working Papers 20-2009, Singapore Management University, School of Economics.
  6. Tony S. Wirjanto & Adam W. Kolkiewicz & Zhongxian Men, 2013. "Stochastic Conditional Duration Models with Mixture Processes," Working Paper Series 29_13, The Rimini Centre for Economic Analysis.
  7. Pastorello, S. & Rossi, E., 2010. "Efficient importance sampling maximum likelihood estimation of stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2753-2762, November.
  8. Galli, Fausto, 2014. "Stochastic conditonal range, a latent variable model for financial volatility," MPRA Paper 54030, University Library of Munich, Germany.
  9. Zhongxian Men & Tony S. Wirjanto & Adam W. Kolkiewicz, 2013. "Bayesian Inference of Multiscale Stochastic Conditional Duration Models," Working Paper Series 63_13, The Rimini Centre for Economic Analysis.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ctl:louvec:2007032. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anne DAVISTER-LOGIST).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.