Advanced Search
MyIDEAS: Login to save this paper or follow this series

Stimulated Maximum Likelihood Estimation of Continuous Time Stochastic Volatility Models

Contents:

Author Info

  • Tore Selland KLEPPE

    ()
    (Department of Mathematics, University of Bergen)

  • Jun YU

    ()
    (School of Economics, Singapore Management University)

  • Hans J. SKAUG

    ()
    (University of Bergen)

Abstract

In this paper we develop and implement a method for maximum simulated likelihood estimation of the continuous time stochastic volatility model with the constant elasticity of volatility. The approach do not require observations on option prices nor volatility. To integrate out latent volatility from the joint density of return and volatility, a modified efficient importance sampling technique is used after the continuous time model is approximated using the Euler-Maruyama scheme. The Monte Carlo studies show that the method works well and the empirical applications illustrate usefulness of the method. Empirical results provide strong evidence against the Heston model.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: https://mercury.smu.edu.sg/rsrchpubupload/15729/euler_eis02.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Singapore Management University, School of Economics in its series Working Papers with number 20-2009.

as in new window
Length: 20 pages
Date of creation: Jun 2009
Date of revision:
Publication status: Published in SMU Economics and Statistics Working Paper Series
Handle: RePEc:siu:wpaper:20-2009

Contact details of provider:
Postal: 90 Stamford Road, Singapore 178903
Phone: 65-6828 0832
Fax: 65-6828 0833
Web page: http://www.economics.smu.edu.sg/
More information through EDIRC

Order Information:
Email:

Related research

Keywords: Efficient importance sampler; Constant elasticity of volatility;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Bauwens, L. & Galli, F., 2009. "Efficient importance sampling for ML estimation of SCD models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1974-1992, April.
  2. Jean-Francois Richard, 2007. "Efficient High-Dimensional Importance Sampling," Working Papers 321, University of Pittsburgh, Department of Economics, revised Jan 2007.
  3. Ai[diaeresis]t-Sahalia, Yacine & Kimmel, Robert, 2007. "Maximum likelihood estimation of stochastic volatility models," Journal of Financial Economics, Elsevier, vol. 83(2), pages 413-452, February.
  4. Liesenfeld, Roman & Richard, Jean-François, 2004. "Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models," Economics Working Papers 2004,12, Christian-Albrechts-University of Kiel, Department of Economics.
  5. Jun Yu, 2004. "On leverage in a stochastic volatility model," Econometric Society 2004 Far Eastern Meetings 497, Econometric Society.
  6. Durham, Garland B., 2006. "Monte Carlo methods for estimating, smoothing, and filtering one- and two-factor stochastic volatility models," Journal of Econometrics, Elsevier, vol. 133(1), pages 273-305, July.
  7. Kleppe, Tore Selland & Skaug, Hans Julius, 2012. "Fitting general stochastic volatility models using Laplace accelerated sequential importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3105-3119.
  8. Yu, Jialin, 2007. "Closed-form likelihood approximation and estimation of jump-diffusions with an application to the realignment risk of the Chinese Yuan," Journal of Econometrics, Elsevier, vol. 141(2), pages 1245-1280, December.
  9. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
  10. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
  11. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "A Theory of the Term Structure of Interest Rates," Econometrica, Econometric Society, vol. 53(2), pages 385-407, March.
  12. Hiroyuki Kawakatsu, 2007. "Numerical integration-based Gaussian mixture filters for maximum likelihood estimation of asymmetric stochastic volatility models," Econometrics Journal, Royal Economic Society, vol. 10(2), pages 342-358, 07.
  13. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
  14. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:siu:wpaper:20-2009. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (QL THor).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.