Advanced Search
MyIDEAS: Login to save this paper or follow this series

Asymmetry and Long Memory in Volatility Modelling

Contents:

Author Info

Abstract

A wide variety of conditional and stochastic variance models has been used to estimate latent volatility (or risk). In this paper, we propose a new long memory asymmetric volatility model which captures more flexible asymmetric patterns as compared with several existing models. We extend the new specification to realized volatility by taking account of measurement errors, and use the Efficient Importance Sampling technique to estimate the model. As an empirical example, we apply the new model to the realized volatility of S&P500 to show that the new specification of asymmetry significantly improves the goodness of fit, and that the out-of-sample forecasts and Value-at-Risk (VaR) thresholds are satisfactory. Overall, the results of the out-of-sample forecasts show the adequacy of the new asymmetric and long memory volatility model for the period including the global financial crisis.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://eprints.ucm.es/13215/1/1129.pdf
File Function: revised augost 2011
Download Restriction: no

Bibliographic Info

Paper provided by Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico in its series Documentos de Trabajo del ICAE with number 2011-29.

as in new window
Length: 29 pages
Date of creation: 2011
Date of revision:
Handle: RePEc:ucm:doicae:1129

Note: The authors are most grateful to a Co-Editor, Associate Editor and two referees for very helpful comments and suggestions, and Marcel Scharth for efficient research assistance. For financial support, the first author acknowledges the Japan Ministry of Education, Culture, Sports, Science and Technology, Japan Society for the Promotion of Science, and Australian Academy of Science, the second author is most grateful to the Australian Research Council, National Science Council, Taiwan, and Japan Society for the Promotion of Science, and the third author wishes to acknowledge CNPq, Brazil.
Contact details of provider:
Phone: 913942604
Fax: 913942531
Email:
Web page: https://www.ucm.es/icae
More information through EDIRC

Order Information:
Postal: Facultad de Ciencias Económicas y Empresariales. Pabellón prefabricado, 1ª Planta, ala norte. Campus de Somosaguas, 28223 - POZUELO DE ALARCÓN (MADRID)
Email:
Web: https://www.ucm.es/fundamentos-analisis-economico2/documentos-de-trabajo-del-icae

Related research

Keywords: Asymmetric volatility; Long memory; Realized volatility; Measurement errors; Efficient importance sampling.;

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Tim Bollerslev & Julia Litvinova & George Tauchen, 2006. "Leverage and Volatility Feedback Effects in High-Frequency Data," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(3), pages 353-384.
  2. Yu, Jun, 2005. "On leverage in a stochastic volatility model," Journal of Econometrics, Elsevier, vol. 127(2), pages 165-178, August.
  3. Peter Hansen & Jeremy Large & Asger Lunde, 2008. "Moving Average-Based Estimators of Integrated Variance," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 79-111.
  4. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2010. "Asymmetry and Long Memory in Volatility Modelling," Working Papers in Economics 10/60, University of Canterbury, Department of Economics and Finance.
  5. Tim Bollerslev & Natalia Sizova & George Tauchen, 2010. "Volatility in Equilibrium: Asymmetries and Dynamic Dependencies," Working Papers 10-34, Duke University, Department of Economics.
  6. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
  7. David E. Allen & Michael McAleer & Marcel Scharth, 2010. "Realized Volatility Risk," Working Papers in Economics 10/26, University of Canterbury, Department of Economics and Finance.
  8. Tim Bollerslev & Hao Zhou, 2001. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility," Finance and Economics Discussion Series 2001-49, Board of Governors of the Federal Reserve System (U.S.).
  9. Manabu Asai & Michael McAleer, 2009. "Alternative Asymmetric Stochastic Volatility Models," CIRJE F-Series CIRJE-F-655, CIRJE, Faculty of Economics, University of Tokyo.
  10. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
  11. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
  12. Peter Christoffersen, 2004. "Backtesting Value-at-Risk: A Duration-Based Approach," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 84-108.
  13. Manabu Asai & Michael McAleer, 2005. "Dynamic Asymmetric Leverage in Stochastic Volatility Models," Econometric Reviews, Taylor & Francis Journals, vol. 24(3), pages 317-332.
  14. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
  15. Bollerslev, Tim & Zhou, Hao, 2006. "Volatility puzzles: a simple framework for gauging return-volatility regressions," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 123-150.
  16. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-63, July.
  17. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
  18. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 53-89.
  19. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
  20. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
  21. McAleer, Michael, 2005. "Automated Inference And Learning In Modeling Financial Volatility," Econometric Theory, Cambridge University Press, vol. 21(01), pages 232-261, February.
  22. Todorov, Viktor, 2009. "Estimation of continuous-time stochastic volatility models with jumps using high-frequency data," Journal of Econometrics, Elsevier, vol. 148(2), pages 131-148, February.
  23. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 145-175.
  24. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
  25. Pong, Shiuyan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2004. "Forecasting currency volatility: A comparison of implied volatilities and AR(FI)MA models," Journal of Banking & Finance, Elsevier, vol. 28(10), pages 2541-2563, October.
  26. Lan Zhang & Per A. Mykland & Yacine Ait-Sahalia, 2003. "A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High Frequency Data," NBER Working Papers 10111, National Bureau of Economic Research, Inc.
  27. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
  28. Martens, Martin & van Dijk, Dick & de Pooter, Michiel, 2009. "Forecasting S&P 500 volatility: Long memory, level shifts, leverage effects, day-of-the-week seasonality, and macroeconomic announcements," International Journal of Forecasting, Elsevier, vol. 25(2), pages 282-303.
  29. Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," OFRC Working Papers Series 2009fe02, Oxford Financial Research Centre.
  30. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-34, October.
  31. Christophe Hurlin & Gilbert Colletaz & Sessi Tokpavi & Bertrand Candelon, 2008. "Backtesting Value-at-Risk: A GMM Duration-Based Test," Working Papers halshs-00329495, HAL.
  32. Roman Liesenfeld & Jean-Francois Richard, 2006. "Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 335-360.
  33. Bandi, Federico M. & Russell, Jeffrey R., 2011. "Market microstructure noise, integrated variance estimators, and the accuracy of asymptotic approximations," Journal of Econometrics, Elsevier, vol. 160(1), pages 145-159, January.
  34. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
  35. Manabu Asai & Michael McAleer, 2009. "Multivariate stochastic volatility, leverage and news impact surfaces," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 292-309, 07.
  36. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  37. Danielsson, Jon, 1994. "Stochastic volatility in asset prices estimation with simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 375-400.
  38. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2012. "Asymmetry and Long Memory in Volatility Modeling," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 10(3), pages 495-512, June.
  2. Manabu Asai & Michael McAleer, 2013. "Leverage and Feedback Effects on Multifactor Wishart Stochastic Volatility for Option Pricing," KIER Working Papers 840, Kyoto University, Institute of Economic Research.
  3. Ho, Kin-Yip & Shi, Yanlin & Zhang, Zhaoyong, 2013. "How does news sentiment impact asset volatility? Evidence from long memory and regime-switching approaches," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 436-456.
  4. Manabu Asai & Michael McAleer, 2013. "A Fractionally Integrated Wishart Stochastic Volatility Model," KIER Working Papers 848, Kyoto University, Institute of Economic Research.
  5. Manabu Asai & Michael McAleer, 2013. "A Fractionally Integrated Wishart Stochastic Volatility Model," Tinbergen Institute Discussion Papers 13-025/III, Tinbergen Institute.
  6. Xiuping Mao & Esther Ruiz & Helena Veiga, 2013. "One for all : nesting asymmetric stochastic volatility models," Statistics and Econometrics Working Papers ws131110, Universidad Carlos III, Departamento de Estadística y Econometría.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ucm:doicae:1129. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Águeda González Abad).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.