Advanced Search
MyIDEAS: Login to save this article or follow this journal

Alternative models for stock price dynamics

Contents:

Author Info

  • Chernov, Mikhail
  • Ronald Gallant, A.
  • Ghysels, Eric
  • Tauchen, George

Abstract

This paper evaluates the role of various volatility specifications, such as multiple stochastic volatility (SV) factors and jump components, in appropriate modeling of equity return distributions. We use estimation technology that facilitates non-nested model comparisons and use a long data set which provides rich information about the conditional and unconditional distribution of returns. We consider two broad families of models: (1) the multifactor loglinear family, and (2) the affine-jump family. Both classes of models have attracted much attention in the derivatives and econometrics literatures. There are various trade-offs in considering such diverse specifications. If pure diffusion SV models are chosen over jump diffusions, it has important implications for hedging strategies. If logaritmic models are chosen over affine ones, it may seriously complicate option pricing. Comparing many different specifications of pure diffusion multi-factor models and jump diffusion models, we find that (1) log linear models have to be extented to 2 factors with feedback in the mean reverting factor, (2) affine models have to have a jumps in returns, stochastic volatility and probably both. Models (1) and (2) are observationally equivalent on the data set in hand. In either (1) or (2) the key is that the volatility can move violently. As we obtain models with comparable empirical fit, one must make a choice based on arguments other than statistical goodness of fit criteria. The considerations include facility to price options, to hedge and parsimony. The affine specification with jumps in volatility might therefore be preferred because of the closed-form derivatives prices. Nous examinons un ensemble de diffusions avec volatilité stochastique et de sauts afin de modéliser la distribution des rendements d'actifs boursiers. Puisque certains modèles sont non-emboîtés, nous utilisons la méthode EMM afin d'étudier et de comparer le comportement des différents modèles.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6VC0-48945H4-5/2/a42c1701c47d6af928d2344721462bc2
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 116 (2003)
Issue (Month): 1-2 ()
Pages: 225-257

as in new window
Handle: RePEc:eee:econom:v:116:y:2003:i:1-2:p:225-257

Contact details of provider:
Web page: http://www.elsevier.com/locate/jeconom

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. MEDDAHI, Nour, 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Universite de Montreal, Departement de sciences economiques.
  2. Yacine Ait-Sahalia & Michael W. Brandt, 2001. "Variable Selection for Portfolio Choice," NBER Working Papers 8127, National Bureau of Economic Research, Inc.
  3. Das, Sanjiv Ranjan & Sundaram, Rangarajan K., 1999. "Of Smiles and Smirks: A Term Structure Perspective," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(02), pages 211-239, June.
  4. Jérôme B. Detemple & René Garcia & Marcel Rindisbacher, 2003. "Asymptotic Properties of Monte Carlo Estimators of Diffusion Processes," CIRANO Working Papers 2003s-11, CIRANO.
  5. Alan Brace & Dariusz G�atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155.
  6. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous-Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, 06.
  7. Ola Elerian & Siddhartha Chib & Neil Shephard, 2000. "Likelihood inference for discretely observed non-linear diffusions," OFRC Working Papers Series 2000mf02, Oxford Financial Research Centre.
  8. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
  9. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(04), pages 657-681, October.
  10. Xiaohong Chen & Lars P. Hansen & Marine Carrasco, 2008. "Nonlinearity and Temporal Dependence," Cowles Foundation Discussion Papers 1652, Cowles Foundation for Research in Economics, Yale University.
  11. repec:cup:etheor:v:12:y:1996:i:4:p:657-81 is not listed on IDEAS
  12. A. Ronald Gallant & Chien-Te Hsu & George Tauchen, 1999. "Using Daily Range Data To Calibrate Volatility Diffusions And Extract The Forward Integrated Variance," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 617-631, November.
  13. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038 Elsevier.
  14. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1992. "Stock Prices and Volume," Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 199-242.
  15. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
  16. Engle, Robert F & Gonzalez-Rivera, Gloria, 1991. "Semiparametric ARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 345-59, October.
  17. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
  18. Platen, Eckhard & Rebolledo, Rolando, 1985. "Weak convergence of semimartingales and discretisation methods," Stochastic Processes and their Applications, Elsevier, vol. 20(1), pages 41-58, July.
  19. Qiang Dai & Kenneth J. Singleton, 2000. "Specification Analysis of Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 55(5), pages 1943-1978, October.
  20. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range-Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, 06.
  21. Gallant, A. Ronald & Hsieh, David & Tauchen, George, 1997. "Estimation of stochastic volatility models with diagnostics," Journal of Econometrics, Elsevier, vol. 81(1), pages 159-192, November.
  22. Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1997. "Empirical Performance of Alternative Option Pricing Models," Yale School of Management Working Papers ysm65, Yale School of Management.
  23. Yacine Ait-Sahalia, 2002. "Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-form Approximation Approach," Econometrica, Econometric Society, vol. 70(1), pages 223-262, January.
  24. Eric Ghysels & Serena Ng, 1998. "A Semi-Parametric Factor Model of Interest Rates and Tests of the Affine Term Structure," Boston College Working Papers in Economics 403, Boston College Department of Economics.
  25. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-43.
  26. Gallant, A.R. & Tauchen, G., 1988. "Seminonparametric Estimation Of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications," Papers 88-59, Chicago - Graduate School of Business.
  27. Chacko, George & Viceira, Luis M., 2003. "Spectral GMM estimation of continuous-time processes," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 259-292.
  28. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. " Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-49, December.
  29. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(04), pages 419-438, December.
  30. Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1997. "Empirical Performance of Alternative Option Pricing Models," Yale School of Management Working Papers ysm54, Yale School of Management.
  31. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:116:y:2003:i:1-2:p:225-257. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.