Advanced Search
MyIDEAS: Login to save this paper or follow this series

In- and Out-of-Sample Specification Analysis of Spot Rate Models: Further Evidence for the Period 1982-2008

Contents:

Author Info

  • Norman R. Swanson

    ()
    (Rutgers University)

  • Lili Cai

    ()
    (Shanghai Jiao Tong University)

Abstract

We review and construct consistent in-sample specification and out-of-sample model selection tests on conditional distributions and predictive densities associated with continuous multifactor (possibly with jumps) and (non)linear discrete models of the short term interest rate. The results of our empirical analysis are used to carry out a “horserace” comparing discrete and continuous models across multiple sample periods, forecast horizons, and evaluation intervals. Our evaluation involves comparing models during two distinct historical periods, as well as across our entire weekly sample of Eurodollar deposit rates from 1982-2008. Interestingly, when our entire sample of data is used to estimate competing models, the “best” performer in terms of distributional “fit” as well as predictive density accuracy, both in-sample and out-of-sample, is the three factor Chen (CHEN: 1996) model examined by Andersen, Benzoni and Lund (2004). Just as interestingly, a logistic type discrete smooth transition autoregression (STAR) model is preferred to the “best” continuous model (i.e. the one factor Cox, Ingersoll, and Ross (CIR: 1985) model) when comparing predictive accuracy for the “Stable 1990s” period that we examine. Moreover, an analogous result holds for the “Post 1990s” period that we examine, where the STAR model is preferred to a two factor stochastic mean model. Thus, when the STAR model is parameterized using only data corresponding to a particular sub-sample, it outperforms the “best” continuous alternative during that period. However, when models are estimated using the entire dataset, the continuous CHEN model is preferred, regardless of the variety of model specification (selection) test that is carried out. Given that it is very difficult to ascertain the particular future regime that will ensue when constructing ex ante predictions, thus, the CHEN model is our overall “winning” model, regardless of sample period.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: ftp://snde.rutgers.edu/Rutgers/wp/2011-02.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Rutgers University, Department of Economics in its series Departmental Working Papers with number 201102.

as in new window
Length: 20 pages
Date of creation: 13 May 2011
Date of revision:
Handle: RePEc:rut:rutres:201102

Contact details of provider:
Postal: New Jersey Hall - 75 Hamilton Street, New Brunswick, NJ 08901-1248
Phone: (732) 932-7482
Fax: (732) 932-7416
Web page: http://snde.rutgers.edu/Rutgers/wp/rutgers-wplist.html
More information through EDIRC

Related research

Keywords: interest rate; multi-factor diffusion process; specification test; out-of-sample forecasts; block bootstrap;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
  2. Corradi, Valentina & Swanson, Norman R., 2005. "Bootstrap specification tests for diffusion processes," Journal of Econometrics, Elsevier, vol. 124(1), pages 117-148, January.
  3. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
  4. Chan, K C, et al, 1992. " An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-27, July.
  5. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data-Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
  6. Bai, Jushan, 1997. "Estimating Multiple Breaks One at a Time," Econometric Theory, Cambridge University Press, vol. 13(03), pages 315-352, June.
  7. Conley, Timothy G, et al, 1997. "Short-Term Interest Rates as Subordinated Diffusions," Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 525-77.
  8. Qiang Dai & Kenneth J. Singleton, 2000. "Specification Analysis of Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 55(5), pages 1943-1978, October.
  9. Hong, Yongmiao & Li, Haitao & Zhao, Feng, 2007. "Can the random walk model be beaten in out-of-sample density forecasts? Evidence from intraday foreign exchange rates," Journal of Econometrics, Elsevier, vol. 141(2), pages 736-776, December.
  10. Christopher S. Jones, 2003. "Nonlinear Mean Reversion in the Short-Term Interest Rate," Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 793-843, July.
  11. Francis X. Diebold & Canlin Li, 2003. "Forecasting the Term Structure of Government Bond Yields," NBER Working Papers 10048, National Bureau of Economic Research, Inc.
  12. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(04), pages 627-627, November.
  13. Pritsker, Matt, 1998. "Nonparametric Density Estimation and Tests of Continuous Time Interest Rate Models," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 449-87.
  14. Sullivan, Ryan & Timmermann, Allan & White, Halbert, 2001. "Dangers of data mining: The case of calendar effects in stock returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 249-286, November.
  15. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "A Theory of the Term Structure of Interest Rates," Econometrica, Econometric Society, vol. 53(2), pages 385-407, March.
  16. Clements, Michael P. & Smith, Jeremy, 2002. "Evaluating multivariate forecast densities: a comparison of two approaches," International Journal of Forecasting, Elsevier, vol. 18(3), pages 397-407.
  17. Valentina Corradi & Norman R. Swanson, 2003. "A Test for Comparing Multiple Misspecified Conditional Distributions," Departmental Working Papers 200314, Rutgers University, Department of Economics.
  18. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
  19. Yacine Ait-Sahalia, 2002. "Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-form Approximation Approach," Econometrica, Econometric Society, vol. 70(1), pages 223-262, January.
  20. Samuel Thompson, 2008. "Identifying Term Structure Volatility from the LIBOR-Swap Curve," Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 819-854, April.
  21. Valentina Corradi & Norman Swanson, 2006. "Predictive Density Evaluation. Revised," Departmental Working Papers 200621, Rutgers University, Department of Economics.
  22. Pierluigi Balduzzi & Sanjiv Ranjan Das & Silverio Foresi, 1997. "The Central Tendency: A Second Factor in Bond Yields," NBER Working Papers 6325, National Bureau of Economic Research, Inc.
  23. Jiang, George J., 1998. "Nonparametric Modeling of U.S. Interest Rate Term Structure Dynamics and Implications on the Prices of Derivative Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(04), pages 465-497, December.
  24. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
  25. Gallant, A. Ronald & Tauchen, George, 1997. "Estimation Of Continuous-Time Models For Stock Returns And Interest Rates," Macroeconomic Dynamics, Cambridge University Press, vol. 1(01), pages 135-168, January.
  26. Norman R. Swanson & Valentina Corradi, 2011. "Predictive Density Construction and Accuracy Testing with Multiple Possibly Misspecified Diffusion Models," Departmental Working Papers 201112, Rutgers University, Department of Economics.
  27. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  28. George Chacko, 2002. "Pricing Interest Rate Derivatives: A General Approach," Review of Financial Studies, Society for Financial Studies, vol. 15(1), pages 195-241, March.
  29. Jiang, George J & Knight, John L, 2002. "Estimation of Continuous-Time Processes via the Empirical Characteristic Function," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 198-212, April.
  30. Singleton, Kenneth J., 2001. "Estimation of affine asset pricing models using the empirical characteristic function," Journal of Econometrics, Elsevier, vol. 102(1), pages 111-141, May.
  31. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-83, November.
  32. Fermanian, Jean-David & Salani , Bernard, 2004. "A Nonparametric Simulated Maximum Likelihood Estimation Method," Econometric Theory, Cambridge University Press, vol. 20(04), pages 701-734, August.
  33. Jushan Bai, 2003. "Testing Parametric Conditional Distributions of Dynamic Models," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 531-549, August.
  34. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(04), pages 657-681, October.
  35. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
  36. Bhardwaj, Geetesh & Corradi, Valentina & Swanson, Norman R., 2008. "A Simulation-Based Specification Test for Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 176-193, April.
  37. Chacko, George & Viceira, Luis M., 2003. "Spectral GMM estimation of continuous-time processes," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 259-292.
  38. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-56, July.
  39. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1999. "Multivariate Density Forecast Evaluation And Calibration In Financial Risk Management: High-Frequency Returns On Foreign Exchange," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 661-673, November.
  40. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
  41. Dong-Hyun Ahn & Robert F. Dittmar, 2002. "Quadratic Term Structure Models: Theory and Evidence," Review of Financial Studies, Society for Financial Studies, vol. 15(1), pages 243-288, March.
  42. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive density and conditional confidence interval accuracy tests," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 187-228.
  43. Bali, Turan G. & Wu, Liuren, 2006. "A comprehensive analysis of the short-term interest-rate dynamics," Journal of Banking & Finance, Elsevier, vol. 30(4), pages 1269-1290, April.
  44. Terasvirta, T & Anderson, H M, 1992. "Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages S119-36, Suppl. De.
  45. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-92.
  46. Jiang, George J. & Knight, John L., 1997. "A Nonparametric Approach to the Estimation of Diffusion Processes, With an Application to a Short-Term Interest Rate Model," Econometric Theory, Cambridge University Press, vol. 13(05), pages 615-645, October.
  47. Stanton, Richard, 1997. " A Nonparametric Model of Term Structure Dynamics and the Market Price of Interest Rate Risk," Journal of Finance, American Finance Association, vol. 52(5), pages 1973-2002, December.
  48. Corradi, Valentina & Swanson, Norman R., 2005. "A Test For Comparing Multiple Misspecified Conditional Interval Models," Econometric Theory, Cambridge University Press, vol. 21(05), pages 991-1016, October.
  49. Valentina Corradi & Norman Swanson, 2004. "Predictive Density Evaluation," Departmental Working Papers 200419, Rutgers University, Department of Economics.
  50. Yacine Ait-Sahalia, 1995. "Testing Continuous-Time Models of the Spot Interest Rate," NBER Working Papers 5346, National Bureau of Economic Research, Inc.
  51. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  52. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
  53. Hiroyuki Kawakatsu, 2007. "Numerical integration-based Gaussian mixture filters for maximum likelihood estimation of asymmetric stochastic volatility models," Econometrics Journal, Royal Economic Society, vol. 10(2), pages 342-358, 07.
  54. Clements, M.P. & Smith J., 1998. "Evaluating The Forecast of Densities of Linear and Non-Linear Models: Applications to Output Growth and Unemployment," The Warwick Economics Research Paper Series (TWERPS) 509, University of Warwick, Department of Economics.
  55. Yongmiao Hong, 2005. "Nonparametric Specification Testing for Continuous-Time Models with Applications to Term Structure of Interest Rates," Review of Financial Studies, Society for Financial Studies, vol. 18(1), pages 37-84.
  56. Donald W. K. Andrews, 1997. "A Conditional Kolmogorov Test," Econometrica, Econometric Society, vol. 65(5), pages 1097-1128, September.
  57. Francis X. Diebold & Anthony S. Tay & Kenneth F. Wallis, 1998. "Evaluating Density Forecasts of Inflation: The Survey of Professional Forecasters," Working Papers 98-15, New York University, Leonard N. Stern School of Business, Department of Economics.
  58. Durham, Garland B., 2003. "Likelihood-based specification analysis of continuous-time models of the short-term interest rate," Journal of Financial Economics, Elsevier, vol. 70(3), pages 463-487, December.
  59. Duffie, Darrell & Singleton, Kenneth J, 1993. "Simulated Moments Estimation of Markov Models of Asset Prices," Econometrica, Econometric Society, vol. 61(4), pages 929-52, July.
  60. BAI, Jushan & PERRON, Pierre, 1998. "Computation and Analysis of Multiple Structural-Change Models," Cahiers de recherche 9807, Universite de Montreal, Departement de sciences economiques.
  61. Ai[diaeresis]t-Sahalia, Yacine & Kimmel, Robert, 2007. "Maximum likelihood estimation of stochastic volatility models," Journal of Financial Economics, Elsevier, vol. 83(2), pages 413-452, February.
  62. Monika Piazzesi, 2005. "Bond Yields and the Federal Reserve," Journal of Political Economy, University of Chicago Press, vol. 113(2), pages 311-344, April.
  63. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
  64. Yongmiao Hong & Haitao Li & Feng Zhao, 2004. "Out-of-Sample Performance of Discrete-Time Spot Interest Rate Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 457-473, October.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Nadarajah, Saralees & Chan, Stephen & Afuecheta, Emmanuel, 2013. "On the characteristic function for asymmetric Student t distributions," Economics Letters, Elsevier, vol. 121(2), pages 271-274.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:rut:rutres:201102. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.