IDEAS home Printed from https://ideas.repec.org/r/inm/ortrsc/v21y1987i2p74-88.html
   My bibliography  Save this item

The Morning Commute for Nonidentical Travelers

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Robin Lindsey, 2004. "Existence, Uniqueness, and Trip Cost Function Properties of User Equilibrium in the Bottleneck Model with Multiple User Classes," Transportation Science, INFORMS, vol. 38(3), pages 293-314, August.
  2. Carrion, Carlos & Levinson, David, 2012. "Value of travel time reliability: A review of current evidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 720-741.
  3. Mogens Fosgerau & Kenneth Small, 2017. "Endogenous Scheduling Preferences And Congestion," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(2), pages 585-615, May.
  4. Wada, Kentaro & Akamatsu, Takashi, 2013. "A hybrid implementation mechanism of tradable network permits system which obviates path enumeration: An auction mechanism with day-to-day capacity control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 94-112.
  5. Shen, Wei & Zhang, H. Michael, 2009. "On the Morning Commute Problem in a Corridor Network with Multiple Bottlenecks: Its System-optimal Traffic Flow Patterns and the Realizing Tolling Scheme," Institute of Transportation Studies, Working Paper Series qt9bs815sq, Institute of Transportation Studies, UC Davis.
  6. Mogens Fosgerau & André de Palma & Anders Karlstrom & Kenneth A. Small, 2012. "Trip timing and scheduling preferences," Working Papers hal-00742267, HAL.
  7. Fu, Xinying & van den Berg, Vincent A.C. & Verhoef, Erik T., 2018. "Private road supply in networks with heterogeneous users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 430-443.
  8. Ramadurai, Gitakrishnan & Ukkusuri, Satish V. & Zhao, Jinye & Pang, Jong-Shi, 2010. "Linear complementarity formulation for single bottleneck model with heterogeneous commuters," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 193-214, February.
  9. Li, Chuan-Yao & Huang, Hai-Jun & Tang, Tie-Qiao, 2017. "Analysis of social optimum for staggered shifts in a single-entry traffic corridor with no late arrivals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 275-283.
  10. Richard Arnott, 1992. "Information and Usage of Congestible Facilities Under Free Access," Discussion Papers 974, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  11. Fosgerau, Mogens & de Palma, André, 2012. "Congestion in a city with a central bottleneck," Journal of Urban Economics, Elsevier, vol. 71(3), pages 269-277.
  12. Yi Liu & Mark Hansen, 2016. "Incorporating Predictability Into Cost Optimization for Ground Delay Programs," Transportation Science, INFORMS, vol. 50(1), pages 132-149, February.
  13. Xiaojuan Yu & Vincent van den Berg & Erik Verhoef, 2019. "Autonomous cars and dynamic bottleneck congestion revisited: how in-vehicle activities determine aggregate travel patterns," Tinbergen Institute Discussion Papers 19-067/VIII, Tinbergen Institute.
  14. Takayama, Yuki & Kuwahara, Masao, 2016. "Scheduling preferences, parking competition, and bottleneck congestion: A model of trip timing and parking location choices by heterogeneous commuters," MPRA Paper 68938, University Library of Munich, Germany.
  15. Lindsey, Robin & de Palma, André & Silva, Hugo E., 2019. "Equilibrium in a dynamic model of congestion with large and small users," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 82-107.
  16. Ryo Kawasaki & Hideo Konishi & Junki Yukawa, 2023. "Equilibria in bottleneck games," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 649-685, September.
  17. Tian, Qiong & Liu, Peng & Ong, Ghim Ping & Huang, Hai-Jun, 2021. "Morning commuting pattern and crowding pricing in a many-to-one public transit system with heterogeneous users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
  18. Feng Xiao & H. M. Zhang, 2014. "Pareto-Improving and Self-Sustainable Pricing for the Morning Commute with Nonidentical Commuters," Transportation Science, INFORMS, vol. 48(2), pages 159-169, May.
  19. Hugo E. Silva & Robin Lindsey & André de Palma & Vincent A. C. van den Berg, 2017. "On the Existence and Uniqueness of Equilibrium in the Bottleneck Model with Atomic Users," Transportation Science, INFORMS, vol. 51(3), pages 863-881, August.
  20. Sathaye, Nakul & Harley, Robert & Madanat, Samer, 2010. "Unintended environmental impacts of nighttime freight logistics activities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(8), pages 642-659, October.
  21. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
  22. Akamatsu, Takashi & Wada, Kentaro & Iryo, Takamasa & Hayashi, Shunsuke, 2021. "A new look at departure time choice equilibrium models with heterogeneous users," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 152-182.
  23. Liu, Yang & Li, Yuanyuan & Hu, Lu, 2018. "Departure time and route choices in bottleneck equilibrium under risk and ambiguity," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 774-793.
  24. Kenneth A. Small & Xuehao Chu, 2003. "Hypercongestion," Journal of Transport Economics and Policy, University of Bath, vol. 37(3), pages 319-352, September.
  25. Liu, Peng & Liu, Jielun & Ong, Ghim Ping & Tian, Qiong, 2020. "Flow pattern and optimal capacity in a bi-modal traffic corridor with heterogeneous users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
  26. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
  27. Nie, Yu (Marco) & Yin, Yafeng, 2013. "Managing rush hour travel choices with tradable credit scheme," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 1-19.
  28. Yu, Xiaojuan & van den Berg, Vincent A.C. & Verhoef, Erik T., 2019. "Carpooling with heterogeneous users in the bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 178-200.
  29. Fu, Haoran & Akamatsu, Takashi & Satsukawa, Koki & Wada, Kentaro, 2022. "Dynamic traffic assignment in a corridor network: Optimum versus equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 218-246.
  30. Pavón, Nicolás & Rizzi, Luis Ignacio, 2019. "Road infrastructure and public bus transport service provision under different funding schemes: A simulation analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 89-105.
  31. Akamatsu, Takashi & Wada, Kentaro & Iryo, Takamasa & Hayashi, Shunsuke, 2018. "Departure time choice equilibrium and optimal transport problems," MPRA Paper 90361, University Library of Munich, Germany.
  32. Feng Xiao & Zhen Qian & H. Zhang, 2011. "The Morning Commute Problem with Coarse Toll and Nonidentical Commuters," Networks and Spatial Economics, Springer, vol. 11(2), pages 343-369, June.
  33. Li, Chuan-Yao & Huang, Hai-Jun & Tang, Tie-Qiao, 2017. "Analysis of user equilibrium for staggered shifts in a single-entry traffic corridor with no late arrivals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 8-18.
  34. Osawa, Minoru & Fu, Haoran & Akamatsu, Takashi, 2018. "First-best dynamic assignment of commuters with endogenous heterogeneities in a corridor network," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 811-831.
  35. Zhang, Michael & Shen, Wei & Nie, Yu & Ma, Jingtao, 2008. "Integrated Construction Zone Traffic Management," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1bd50918, Institute of Transportation Studies, UC Berkeley.
  36. Jonathan D. Hall, 2017. "Improving the fit of structural models of congestion," Working Papers tecipa-590, University of Toronto, Department of Economics.
  37. Hall, Jonathan D., 2018. "Pareto improvements from Lexus Lanes: The effects of pricing a portion of the lanes on congested highways," Journal of Public Economics, Elsevier, vol. 158(C), pages 113-125.
  38. Chen, Hongyu & Liu, Yang & Nie, Yu (Marco), 2015. "Solving the step-tolled bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 210-229.
  39. Liu, Yang & Nie, Yu (Marco), 2011. "Morning commute problem considering route choice, user heterogeneity and alternative system optima," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 619-642.
  40. Tang, Qing & Hu, Xianbiao & Lu, Jiawei & Zhou, Xuesong, 2021. "Analytical characterization of multi-state effective discharge rates for bus-only lane conversion scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 106-131.
  41. Yu Nie, 2015. "A New Tradable Credit Scheme for the Morning Commute Problem," Networks and Spatial Economics, Springer, vol. 15(3), pages 719-741, September.
  42. Shen, Wei & Zhang, H.M., 2009. "On the morning commute problem in a corridor network with multiple bottlenecks: Its system-optimal traffic flow patterns and the realizing tolling scheme," Transportation Research Part B: Methodological, Elsevier, vol. 43(3), pages 267-284, March.
  43. Liu, Yang & Nie, Yu (Marco) & Hall, Jonathan, 2015. "A semi-analytical approach for solving the bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 56-70.
  44. Donald K. Richter & John Griffin & Richard Arnott, 1990. "Computation of Dynamic User Equilibria in a Model of Peak Period Traffic Congestion with Heterogenous Commuters," Boston College Working Papers in Economics 198, Boston College Department of Economics.
  45. Amirgholy, Mahyar & Gao, H. Oliver, 2017. "Modeling the dynamics of congestion in large urban networks using the macroscopic fundamental diagram: User equilibrium, system optimum, and pricing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 215-237.
  46. Xiao, Feng & Qian, Zhen (Sean) & Zhang, H. Michael, 2013. "Managing bottleneck congestion with tradable credits," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 1-14.
  47. Shen, Wei & Zhang, H.M., 2010. "Pareto-improving ramp metering strategies for reducing congestion in the morning commute," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 676-696, November.
  48. Lu, Gongyuan & Nie, Yu(Marco) & Liu, Xiaobo & Li, Denghui, 2019. "Trajectory-based traffic management inside an autonomous vehicle zone," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 76-98.
  49. Xiao, Feng & Shen, Wei & Michael Zhang, H., 2012. "The morning commute under flat toll and tactical waiting," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1346-1359.
  50. Lamotte, Raphaël & Geroliminis, Nikolas, 2018. "The morning commute in urban areas with heterogeneous trip lengths," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 794-810.
  51. Peer, Stefanie & Verhoef, Erik T., 2013. "Equilibrium at a bottleneck when long-run and short-run scheduling preferences diverge," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 12-27.
  52. Richard Arnott, 1986. "Information and Time-Of-Use Decisions in Stochastically Congestable Facilities," Discussion Papers 788, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  53. Small, Kenneth A., 2015. "The bottleneck model: An assessment and interpretation," Economics of Transportation, Elsevier, vol. 4(1), pages 110-117.
  54. Yildirimoglu, Mehmet & Ramezani, Mohsen, 2020. "Demand management with limited cooperation among travellers: A doubly dynamic approach," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 267-284.
  55. Chen, Hongyu & Nie, Yu (Marco) & Yin, Yafeng, 2015. "Optimal multi-step toll design under general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 775-793.
  56. Amirgholy, Mahyar & Shahabi, Mehrdad & Gao, H. Oliver, 2017. "Optimal design of sustainable transit systems in congested urban networks: A macroscopic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 261-285.
  57. Small, Kenneth A., 2012. "Valuation of travel time," Economics of Transportation, Elsevier, vol. 1(1), pages 2-14.
  58. Sang Nguyen & Stefano Pallottino & Federico Malucelli, 2001. "A Modeling Framework for Passenger Assignment on a Transport Network with Timetables," Transportation Science, INFORMS, vol. 35(3), pages 238-249, August.
  59. Wu, Wen-Xiang & Huang, Hai-Jun, 2015. "An ordinary differential equation formulation of the bottleneck model with user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 34-58.
  60. Vincent van den Berg, "undated". "Self-financing roads under coarse tolling and heterogeneous preferences," Tinbergen Institute Discussion Papers 22-045/VIII, Tinbergen Institute.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.