IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v36y2008i2p662-672.html
   My bibliography  Save this item

Energy use efficiency in the Indian manufacturing sector: An interstate analysis

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lita Iulian & Stamule Tănase, 2018. "Using non-parametric technical data envelopment analysis - DEA, for measuring productive technical efficiency," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 12(1), pages 533-543, May.
  2. Lin, Boqiang & Wu, Ya & Zhang, Li, 2011. "Estimates of the potential for energy conservation in the Chinese steel industry," Energy Policy, Elsevier, vol. 39(6), pages 3680-3689, June.
  3. Bhat, Javed Ahmad & Haider, Salman & Kamaiah, Bandi, 2018. "Interstate energy efficiency of Indian paper industry: A slack-based non-parametric approach," Energy, Elsevier, vol. 161(C), pages 284-298.
  4. Mohammadi, Ali & Rafiee, Shahin & Mohtasebi, Seyed Saeid & Mousavi Avval, Seyed Hashem & Rafiee, Hamed, 2011. "Energy efficiency improvement and input cost saving in kiwifruit production using Data Envelopment Analysis approach," Renewable Energy, Elsevier, vol. 36(9), pages 2573-2579.
  5. Manish Gupta & Ramprasad Sengupta, 2013. "Energy Savings Potential and Policy for Energy Conservation in Selected Indian Manufacturing Industries," Review of Market Integration, India Development Foundation, vol. 5(3), pages 363-388, December.
  6. Wang, Jiangquan & Ma, Xiaowei & Zhang, Jun & Zhao, Xin, 2022. "Impacts of digital technology on energy sustainability: China case study," Applied Energy, Elsevier, vol. 323(C).
  7. Qianqian Wu & Rong Wang, 2022. "Exploring the Role of Environmental Regulation and Fiscal Decentralization in Regional Energy Efficiency in the Context of Global Climate," IJERPH, MDPI, vol. 19(24), pages 1-19, December.
  8. Kaumudi Misra, 2019. "Impact of perform-achieve-trade policy on the energy intensity of cement and iron and steel industries in India," Working Papers 451, Institute for Social and Economic Change, Bangalore.
  9. Lin, Boqiang & Chen, Yu & Zhang, Guoliang, 2018. "Impact of technological progress on China's textile industry and future energy saving potential forecast," Energy, Elsevier, vol. 161(C), pages 859-869.
  10. Fan Jianping & Yue Weizhen & Wu Meiqin, 2015. "Dealing with Interval DEA Based on Error Propagation and Entropy: A Case Study of Energy Efficiency of Regions in China Considering Environmental Factors," Journal of Systems Science and Information, De Gruyter, vol. 3(6), pages 538-548, December.
  11. Oğuz, Cennet & Yener, Aysun, 2019. "The use of energy in milk production; a case study from Konya province of Turkey," Energy, Elsevier, vol. 183(C), pages 142-148.
  12. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
  13. Silveria, Fernando Castellanos & Luken, Ralph A., 2008. "Global overview of industrial energy intensity," Energy Policy, Elsevier, vol. 36(7), pages 2658-2664, July.
  14. Bishwanath Goldar, 2010. "Energy Intensity of Indian Manufacturing Firms: Effect of Energy Prices, Technology and Firm Characteristics," Working Papers id:2483, eSocialSciences.
  15. Shi Wang & Hua Wang, 2022. "Can Global Value Chain Participation Drive Green Upgrade in China’s Manufacturing Industry?," IJERPH, MDPI, vol. 19(19), pages 1-20, September.
  16. Hong, Gui-Bing & Ma, Chih-Ming & Chen, Hua-Wei & Chuang, Kai-Jen & Chang, Chang-Tang & Su, Te-Li, 2011. "Energy flow analysis in pulp and paper industry," Energy, Elsevier, vol. 36(5), pages 3063-3068.
  17. Blomberg, Jerry & Henriksson, Eva & Lundmark, Robert, 2012. "Energy efficiency and policy in Swedish pulp and paper mills: A data envelopment analysis approach," Energy Policy, Elsevier, vol. 42(C), pages 569-579.
  18. Hang, Ye & Sun, Jiasen & Wang, Qunwei & Zhao, Zengyao & Wang, Yizhong, 2015. "Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities," Economic Modelling, Elsevier, vol. 49(C), pages 46-52.
  19. Cui, Qiang & Li, Ye, 2015. "An empirical study on the influencing factors of transportation carbon efficiency: Evidences from fifteen countries," Applied Energy, Elsevier, vol. 141(C), pages 209-217.
  20. Caspar Sauter, 2014. "How should we measure environmental policy stringency? A new approach," IRENE Working Papers 14-01, IRENE Institute of Economic Research.
  21. Wang, Qiang & Li, Rongrong, 2016. "Drivers for energy consumption: A comparative analysis of China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 954-962.
  22. Guo, Xiaoying & Lu, Ching-Cheng & Lee, Jen-Hui & Chiu, Yung-Ho, 2017. "Applying the dynamic DEA model to evaluate the energy efficiency of OECD countries and China," Energy, Elsevier, vol. 134(C), pages 392-399.
  23. Macharia, Kenneth Kigundu & Gathiaka, John Kamau & Ngui, Dianah, 2022. "Energy efficiency in the Kenyan manufacturing sector," Energy Policy, Elsevier, vol. 161(C).
  24. Mandal, Sabuj Kumar, 2010. "Do undesirable output and environmental regulation matter in energy efficiency analysis? Evidence from Indian Cement Industry," Energy Policy, Elsevier, vol. 38(10), pages 6076-6083, October.
  25. Mingzhe Yu & Qiang Zhou & Mui Yee Cheok & Jakub Kubiczek & Nadeem Iqbal, 2022. "Does green finance improve energy efficiency? New evidence from developing and developed economies," Economic Change and Restructuring, Springer, vol. 55(1), pages 485-509, February.
  26. Ching-Cheng Lu & Liang-Chun Lu, 2019. "Evaluating the energy efficiency of European Union countries: The dynamic data envelopment analysis," Energy & Environment, , vol. 30(1), pages 27-43, February.
  27. Qiao, Lu & Li, Lin & Fei, Junjun, 2022. "Information infrastructure and air pollution: Empirical analysis based on data from Chinese cities," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 563-573.
  28. Wang, Xiaolei & Lin, Boqiang, 2016. "How to reduce CO2 emissions in China׳s iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1496-1505.
  29. Cui, Qiang & Kuang, Hai-bo & Wu, Chun-you & Li, Ye, 2014. "The changing trend and influencing factors of energy efficiency: The case of nine countries," Energy, Elsevier, vol. 64(C), pages 1026-1034.
  30. Lin, Boqiang & Zhang, Li & Wu, Ya, 2012. "Evaluation of electricity saving potential in China's chemical industry based on cointegration," Energy Policy, Elsevier, vol. 44(C), pages 320-330.
  31. Clara Inés Pardo Martínez, 2008. "Energy efficiency development in the German and Colombian Energy Intensive Sectors: A non-parametric analysis," Serie de Documentos en Economía y Violencia 6317, Centro de Investigaciones en Violencia, Instituciones y Desarrollo Económico (VIDE).
  32. Guo, Qiu-tong & Dong, Yong & Feng, Biao & Zhang, Hao, 2023. "Can green finance development promote total-factor energy efficiency? Empirical evidence from China based on a spatial Durbin model," Energy Policy, Elsevier, vol. 177(C).
  33. Lin, Boqiang & Chen, Yu, 2020. "Transportation infrastructure and efficient energy services: A perspective of China's manufacturing industry," Energy Economics, Elsevier, vol. 89(C).
  34. He, Pinglin & Sun, Yulong & Niu, Hanlu & Long, Chengfeng & Li, Shufeng, 2021. "The long and short-term effects of environmental tax on energy efficiency: Perspective of OECD energy tax and vehicle traffic tax," Economic Modelling, Elsevier, vol. 97(C), pages 307-325.
  35. Liming Yao & Jiuping Xu & Yifan Li, 2014. "Evaluation of the Efficiency of Low Carbon Industrialization in Cultural and Natural Heritage: Taking Leshan as an Example," Sustainability, MDPI, vol. 6(6), pages 1-18, June.
  36. Demiral, Elif E. & Sağlam, Ümit, 2021. "Eco-efficiency and Eco-productivity assessments of the states in the United States: A two-stage Non-parametric analysis," Applied Energy, Elsevier, vol. 303(C).
  37. Wu, F. & Fan, L.W. & Zhou, P. & Zhou, D.Q., 2012. "Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis," Energy Policy, Elsevier, vol. 49(C), pages 164-172.
  38. Dan Wu & Ching-Cheng Lu & Xiang Chen & Pei-Chieh Tu & An-Chi Yang & Chih-Yu Yang, 2021. "Evaluating the Dynamic Energy Production Efficiency in APEC Economies," Energies, MDPI, vol. 14(14), pages 1-20, July.
  39. Lin, Boqiang & Wang, Ailun, 2015. "Estimating energy conservation potential in China's commercial sector," Energy, Elsevier, vol. 82(C), pages 147-156.
  40. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
  41. Haider, Salman & Mishra, Prajna Paramita, 2021. "Does innovative capability enhance the energy efficiency of Indian Iron and Steel firms? A Bayesian stochastic frontier analysis," Energy Economics, Elsevier, vol. 95(C).
  42. Elżbieta Jadwiga Szymańska & Robert Mroczek, 2023. "Energy Intensity of Food Industry Production in Poland in the Process of Energy Transformation," Energies, MDPI, vol. 16(4), pages 1-24, February.
  43. Pardo Martínez, Clara Inés, 2013. "An analysis of eco-efficiency in energy use and CO2 emissions in the Swedish service industries," Socio-Economic Planning Sciences, Elsevier, vol. 47(2), pages 120-130.
  44. Amjadi, Golnaz & Lundgren, Tommy, 2022. "Is industrial energy inefficiency transient or persistent? Evidence from Swedish manufacturing," Applied Energy, Elsevier, vol. 309(C).
  45. Honma, Satoshi & Hu, Jin-Li, 2014. "A panel data parametric frontier technique for measuring total-factor energy efficiency: An application to Japanese regions," Energy, Elsevier, vol. 78(C), pages 732-739.
  46. Xu, Xin & Cui, Qiang, 2017. "Evaluating airline energy efficiency: An integrated approach with Network Epsilon-based Measure and Network Slacks-based Measure," Energy, Elsevier, vol. 122(C), pages 274-286.
  47. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Electricity demand and conservation potential in the Chinese nonmetallic mineral products industry," Energy Policy, Elsevier, vol. 68(C), pages 243-253.
  48. Tanaka, Kenta & Managi, Shunsuke, 2021. "Industrial agglomeration effect for energy efficiency in Japanese production plants," Energy Policy, Elsevier, vol. 156(C).
  49. Sabuj Kumar Mandal & S Madheswaran, 2009. "Measuring Energy Use Efficiency in Presence of Undesirable Output: An Application of Data Envelopment Analysis (DEA) to Indian Cement Industry," Working Papers 235, Institute for Social and Economic Change, Bangalore.
  50. Lin, Boqiang & Zhang, Guoliang, 2013. "Estimates of electricity saving potential in Chinese nonferrous metals industry," Energy Policy, Elsevier, vol. 60(C), pages 558-568.
  51. Inma Martínez-Zarzoso & Shampa Roy-Mukherjee & Finn-Ole Semrau & Anca M. Voicu, 2020. "Pollution Reduction by Rationalization in Indian Firms," Working Papers 2020.01, International Network for Economic Research - INFER.
  52. Haider, Salman & Danish, Mohd Shadab & Sharma, Ruchi, 2019. "Assessing energy efficiency of Indian paper industry and influencing factors: A slack-based firm-level analysis," Energy Economics, Elsevier, vol. 81(C), pages 454-464.
  53. Kaplowitz, Michael D. & Thorp, Laurie & Coleman, Kayla & Kwame Yeboah, Felix, 2012. "Energy conservation attitudes, knowledge, and behaviors in science laboratories," Energy Policy, Elsevier, vol. 50(C), pages 581-591.
  54. Chen, Yu & Lin, Boqiang, 2021. "Understanding the green total factor energy efficiency gap between regional manufacturing—insight from infrastructure development," Energy, Elsevier, vol. 237(C).
  55. Zhang, Shanshan & Lundgren, Tommy & Zhou, Wenchao, 2016. "Energy efficiency in Swedish industry," Energy Economics, Elsevier, vol. 55(C), pages 42-51.
  56. Sungsig Bang, 2020. "Performance Evaluation of Energy Research Projects Using DEA Super-Efficiency," Energies, MDPI, vol. 13(20), pages 1-19, October.
  57. Lin, Boqiang & Chen, Yu, 2020. "Will land transport infrastructure affect the energy and carbon dioxide emissions performance of China’s manufacturing industry?," Applied Energy, Elsevier, vol. 260(C).
  58. Oggioni, G. & Riccardi, R. & Toninelli, R., 2011. "Eco-efficiency of the world cement industry: A data envelopment analysis," Energy Policy, Elsevier, vol. 39(5), pages 2842-2854, May.
  59. Hong, Gui-Bing & Su, Te-Li & Lee, Jenq-Daw & Hsu, Tsung-Chi & Chen, Hua-Wei, 2010. "Energy conservation potential in Taiwanese textile industry," Energy Policy, Elsevier, vol. 38(11), pages 7048-7053, November.
  60. Cui, Qiang & Li, Ye, 2015. "Evaluating energy efficiency for airlines: An application of VFB-DEA," Journal of Air Transport Management, Elsevier, vol. 44, pages 34-41.
  61. Kumar Mandal, Sabuj & Madheswaran, S., 2010. "Environmental efficiency of the Indian cement industry: An interstate analysis," Energy Policy, Elsevier, vol. 38(2), pages 1108-1118, February.
  62. Liao, Hua & Peng, Ying & Wang, Fang-Zhi & Zhang, Tong, 2022. "Understanding energy use growth: The role of investment-GDP ratio," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 15-24.
  63. Yih-Liang Chan, David & Yang, Kuang-Han & Lee, Jenq-Daw & Hong, Gui-Bing, 2010. "The case study of furnace use and energy conservation in iron and steel industry," Energy, Elsevier, vol. 35(4), pages 1665-1670.
  64. Das, Khanindra Ch. & Mahalik, Mantu Kumar, 2023. "Renewable energy use and export performance of manufacturing firms: Panel evidence from six industries in India," Energy Economics, Elsevier, vol. 125(C).
  65. Mukherjee, Kankana, 2010. "Measuring energy efficiency in the context of an emerging economy: The case of indian manufacturing," European Journal of Operational Research, Elsevier, vol. 201(3), pages 933-941, March.
  66. Pardo Martínez, Clara Inés & Silveira, Semida, 2012. "Analysis of energy use and CO2 emission in service industries: Evidence from Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5285-5294.
  67. Anukriti Sharma & Hiranmoy Roy & Narendra Nath Dalei, 2019. "Estimation Of Energy Intensity In Indian Iron And Steel Sector: A Panel Data Analysis," Statistics in Transition New Series, Polish Statistical Association, vol. 20(2), pages 107-121, June.
  68. Yu, Yu & Wang, Derek D. & Li, Shanling & Shi, Qinfen, 2016. "Assessment of U.S. firm-level climate change performance and strategy," Energy Policy, Elsevier, vol. 92(C), pages 432-443.
  69. Gang Du & Chuanwang Sun, 2015. "Determinants of Electricity Demand in Nonmetallic Mineral Products Industry: Evidence from a Comparative Study of Japan and China," Sustainability, MDPI, vol. 7(6), pages 1-25, June.
  70. Sharma Anukriti & Roy Hiranmoy & Dalei Narendra Nath, 2019. "Estimation Of Energy Intensity In Indian Iron And Steel Sector: A Panel Data Analysis," Statistics in Transition New Series, Polish Statistical Association, vol. 20(2), pages 107-121, June.
  71. Oleg Badunenko & Subal C. Kumbhakar, 2020. "Energy Intensity and Long- and Short-Term Efficiency in US Manufacturing Industry," Energies, MDPI, vol. 13(15), pages 1-21, August.
  72. Xu Chu & Yiying Jin & Xuan Wang & Xiankun Wang & Xiaoqian Song, 2022. "The Evolution of the Spatial-Temporal Differences of Municipal Solid Waste Carbon Emission Efficiency in China," Energies, MDPI, vol. 15(11), pages 1-23, May.
  73. Feng, Chao & Wang, Miao, 2018. "Analysis of energy efficiency in China's transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 565-575.
  74. Riccardi, R. & Oggioni, G. & Toninelli, R., 2012. "Efficiency analysis of world cement industry in presence of undesirable output: Application of data envelopment analysis and directional distance function," Energy Policy, Elsevier, vol. 44(C), pages 140-152.
  75. Apergis, Nicholas & Aye, Goodness C. & Barros, Carlos Pestana & Gupta, Rangan & Wanke, Peter, 2015. "Energy efficiency of selected OECD countries: A slacks based model with undesirable outputs," Energy Economics, Elsevier, vol. 51(C), pages 45-53.
  76. Lin, Boqiang & Wang, Xiaolei, 2014. "Promoting energy conservation in China's iron & steel sector," Energy, Elsevier, vol. 73(C), pages 465-474.
  77. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Mohammadi, Ali, 2011. "Optimization of energy consumption and input costs for apple production in Iran using data envelopment analysis," Energy, Elsevier, vol. 36(2), pages 909-916.
  78. Bhattacharya, Mita & Inekwe, John Nkwoma & Sadorsky, Perry & Saha, Anjan, 2018. "Convergence of energy productivity across Indian states and territories," Energy Economics, Elsevier, vol. 74(C), pages 427-440.
  79. Nelson Amowine & Zhiqiang Ma & Mingxing Li & Zhixiang Zhou & Benjamin Azembila Asunka & James Amowine, 2019. "Energy Efficiency Improvement Assessment in Africa: An Integrated Dynamic DEA Approach," Energies, MDPI, vol. 12(20), pages 1-17, October.
  80. Amjadi, Golnaz, 2020. "Essays on Energy Efficiency, Environmental Regulation and Labor Demand in Swedish Industry," Umeå Economic Studies 982, Umeå University, Department of Economics.
  81. Oak, Hena & Bansal, Sangeeta, 2018. "Effect of Perform-Achieve-Trade Policy on Energy Efficiency of Indian Industries: Evidence from Fertilizer Industry," 2018 Annual Meeting, August 5-7, Washington, D.C. 274422, Agricultural and Applied Economics Association.
  82. Ghodeswar, Archana & Oliver, Matthew E., 2022. "Trading one waste for another? Unintended consequences of fly ash reuse in the Indian electric power sector," Energy Policy, Elsevier, vol. 165(C).
  83. Zeng, Ximei & Zhou, Zhongbao & Gong, Yeming & Liu, Wenbin, 2022. "A data envelopment analysis model integrated with portfolio theory for energy mix adjustment: Evidence in the power industry," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
  84. Sabuj Kumar Mandal & S Madheswaran, 2009. "Energy Use Efficiency in Indian Cement Industry: Application of Data Envelopment Analysis and Directional Distance Function," Working Papers 230, Institute for Social and Economic Change, Bangalore.
  85. Kumar Mandal, Sabuj & Madheswaran, S., 2010. "Causality between energy consumption and output growth in the Indian cement industry: An application of the panel vector error correction model (VECM)," Energy Policy, Elsevier, vol. 38(11), pages 6560-6565, November.
  86. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
  87. Sabuj Kumar Mandal & S Madheswaran, 2010. "Causality between Energy Consumption and Output Growth in Indian Cement Industry: An Application of Panel Vector Error Correction Model," Working Papers 238, Institute for Social and Economic Change, Bangalore.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.