IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v161y2022ics0301421521005802.html
   My bibliography  Save this article

Energy efficiency in the Kenyan manufacturing sector

Author

Listed:
  • Macharia, Kenneth Kigundu
  • Gathiaka, John Kamau
  • Ngui, Dianah

Abstract

As one of the highest energy-consuming sectors, Kenya's manufacturing sector share of electricity consumption in 2019 was 50.16%. That of fuel consumption was 12%, the second-highest after the transport sector. It is therefore important to analyze the sector's energy efficiency and its determinants. A stochastic frontier analysis based on the assumption of a translog production function at the sub-sector level is estimated by employing a pooled model covering the years 2007, 2013 and 2018 in the analysis of electricity efficiency and 2007 and 2013 in the analysis of fuel and total energy efficiency. The sub-sectors of interest are: chemicals, pharmaceuticals and plastics, food, textile and garments and the other manufacturing sub-sector. The results show significant potential to enhance electricity, fuel and total energy efficiency across all the sub-sectors. The findings further reveal that exporting status, research and development, top managers' experience and female ownership enhance energy efficiency. The effect of these variables is, however heterogeneous by sub-sector and energy form. Labor productivity negatively influences electricity, fuel and total energy efficiency while the effect of firm age and size is ambiguous. Finally, the study provides policy implications for the design of policies to improve energy efficiency.

Suggested Citation

  • Macharia, Kenneth Kigundu & Gathiaka, John Kamau & Ngui, Dianah, 2022. "Energy efficiency in the Kenyan manufacturing sector," Energy Policy, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:enepol:v:161:y:2022:i:c:s0301421521005802
    DOI: 10.1016/j.enpol.2021.112715
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421521005802
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112715?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Massimo Filippini & Lester C. Hunt, 2011. "Energy Demand and Energy Efficiency in the OECD Countries: A Stochastic Demand Frontier Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 59-80.
    2. Lin, Boqiang & Wu, Ya & Zhang, Li, 2011. "Estimates of the potential for energy conservation in the Chinese steel industry," Energy Policy, Elsevier, vol. 39(6), pages 3680-3689, June.
    3. Haider, Salman & Danish, Mohd Shadab & Sharma, Ruchi, 2019. "Assessing energy efficiency of Indian paper industry and influencing factors: A slack-based firm-level analysis," Energy Economics, Elsevier, vol. 81(C), pages 454-464.
    4. Filippini, Massimo & Hunt, Lester C., 2012. "US residential energy demand and energy efficiency: A stochastic demand frontier approach," Energy Economics, Elsevier, vol. 34(5), pages 1484-1491.
    5. Arne Bigsten & Mans Söderbom, 2006. "What Have We Learned from a Decade of Manufacturing Enterprise Surveys in Africa?," The World Bank Research Observer, World Bank, vol. 21(2), pages 241-265.
    6. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    7. Massimo Filippini & Lester C. Hunt, 2013. "'Underlying Energy Efficiency' in the US," CER-ETH Economics working paper series 13/181, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    8. Ephraim Chirwa, 2001. "Privatization and Technical Efficiency: Evidence from the Manufacturing Sector in Malawi," African Development Review, African Development Bank, vol. 13(2), pages 276-307.
    9. Dianah Ngui & Joseph Muniu, 2012. "Firm Efficiency Differences and Distribution in the Kenyan Manufacturing Sector," African Development Review, African Development Bank, vol. 24(1), pages 52-66.
    10. Gale A. Boyd, 2008. "Estimating Plant Level Energy Efficiency with a Stochastic Frontier," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 23-44.
    11. Moon, Hana & Min, Daiki, 2017. "Assessing energy efficiency and the related policy implications for energy-intensive firms in Korea: DEA approach," Energy, Elsevier, vol. 133(C), pages 23-34.
    12. Jovanovic, Boyan, 1982. "Selection and the Evolution of Industry," Econometrica, Econometric Society, vol. 50(3), pages 649-670, May.
    13. Joanne Evans & Lester C. Hunt (ed.), 2009. "International Handbook on the Economics of Energy," Books, Edward Elgar Publishing, number 12764.
    14. Jacinta Ndichu & Julian Blohmke & Ren� Kemp & John Adeoti & Abiodun Elijah Obayelu, 2015. "The adoption of energy efficiency measures by firms in Africa: case studies of cassava processing in Nigeria and maize milling in Kenya," Innovation and Development, Taylor & Francis Journals, vol. 5(2), pages 189-206, October.
    15. Mehdi Farsi & Massimo Filippini & William Greene, 2005. "Efficiency Measurement in Network Industries: Application to the Swiss Railway Companies," Journal of Regulatory Economics, Springer, vol. 28(1), pages 69-90, July.
    16. Lin, Boqiang & Wang, Xiaolei, 2014. "Exploring energy efficiency in China׳s iron and steel industry: A stochastic frontier approach," Energy Policy, Elsevier, vol. 72(C), pages 87-96.
    17. Boyd, Gale A. & Lee, Jonathan M., 2019. "Measuring plant level energy efficiency and technical change in the U.S. metal-based durable manufacturing sector using stochastic frontier analysis," Energy Economics, Elsevier, vol. 81(C), pages 159-174.
    18. Mukherjee, Kankana, 2008. "Energy use efficiency in U.S. manufacturing: A nonparametric analysis," Energy Economics, Elsevier, vol. 30(1), pages 76-96, January.
    19. Dalla Longa, Francesco & van der Zwaan, Bob, 2017. "Do Kenya’s climate change mitigation ambitions necessitate large-scale renewable energy deployment and dedicated low-carbon energy policy?," Renewable Energy, Elsevier, vol. 113(C), pages 1559-1568.
    20. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    21. Almas Heshmati, 2003. "Productivity Growth, Efficiency and Outsourcing in Manufacturing and Service Industries," Journal of Economic Surveys, Wiley Blackwell, vol. 17(1), pages 79-112, February.
    22. Mukherjee, Kankana, 2008. "Energy use efficiency in the Indian manufacturing sector: An interstate analysis," Energy Policy, Elsevier, vol. 36(2), pages 662-672, February.
    23. Zhang, Xing-Ping & Cheng, Xiao-Mei & Yuan, Jia-Hai & Gao, Xiao-Jun, 2011. "Total-factor energy efficiency in developing countries," Energy Policy, Elsevier, vol. 39(2), pages 644-650, February.
    24. Blomberg, Jerry & Henriksson, Eva & Lundmark, Robert, 2012. "Energy efficiency and policy in Swedish pulp and paper mills: A data envelopment analysis approach," Energy Policy, Elsevier, vol. 42(C), pages 569-579.
    25. COELLI, Tim, 2000. "On the econometric estimation of the distance function representation of a production technology," LIDAM Discussion Papers CORE 2000042, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    26. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    27. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    28. Mehdi Farsi & Massimo Filippini & Michael Kuenzle, 2005. "Unobserved heterogeneity in stochastic cost frontier models: an application to Swiss nursing homes," Applied Economics, Taylor & Francis Journals, vol. 37(18), pages 2127-2141.
    29. Lutz, Benjamin Johannes & Massier, Philipp & Sommerfeld, Katrin & Löschel, Andreas, 2017. "Drivers of energy efficiency in German manufacturing: A firm-level stochastic frontier analysis," ZEW Discussion Papers 17-068, ZEW - Leibniz Centre for European Economic Research.
    30. Mehdi Farsi & Massimo Filippini, 2009. "Efficiency Measurement in the Electricity and Gas Distribution Sectors," Chapters, in: Joanne Evans & Lester C. Hunt (ed.), International Handbook on the Economics of Energy, chapter 25, Edward Elgar Publishing.
    31. Kumbhakar,Subal C. & Wang,Hung-Jen & Horncastle,Alan P., 2015. "A Practitioner's Guide to Stochastic Frontier Analysis Using Stata," Cambridge Books, Cambridge University Press, number 9781107029514.
    32. Montalbano, P. & Nenci, S., 2019. "Energy efficiency, productivity and exporting: Firm-level evidence in Latin America," Energy Economics, Elsevier, vol. 79(C), pages 97-110.
    33. Costa-Campi, María Teresa & García-Quevedo, José & Segarra, Agustí, 2015. "Energy efficiency determinants: An empirical analysis of Spanish innovative firms," Energy Policy, Elsevier, vol. 83(C), pages 229-239.
    34. Kodde, David A & Palm, Franz C, 1986. "Wald Criteria for Jointly Testing Equality and Inequality Restriction s," Econometrica, Econometric Society, vol. 54(5), pages 1243-1248, September.
    35. Roy, Jayjit & Yasar, Mahmut, 2015. "Energy efficiency and exporting: Evidence from firm-level data," Energy Economics, Elsevier, vol. 52(PA), pages 127-135.
    36. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    37. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yonghan Jeon & Jongoh Nam, 2023. "Estimating Energy Efficiency and Energy Saving Potential in the Republic of Korea’s Offshore Fisheries," Sustainability, MDPI, vol. 15(20), pages 1-17, October.
    2. Zhao, Nan & Liu, Xiaojie & Zhang, Zizhe, 2022. "Does competition from the informal sector affect firms’ energy intensity? Evidence from China," Structural Change and Economic Dynamics, Elsevier, vol. 62(C), pages 130-142.
    3. Xiekui Zhang & Baocheng Yu, 2023. "The Impact of Ownership Structure on Technological Innovation and Energy Intensity: Evidence from China," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    4. Wang, Hai-jie & Tang, Kai, 2023. "Extreme climate, innovative ability and energy efficiency," Energy Economics, Elsevier, vol. 120(C).
    5. Jun Liu & Yu Qian & Yuanjun Yang & Zhidan Yang, 2022. "Can Artificial Intelligence Improve the Energy Efficiency of Manufacturing Companies? Evidence from China," IJERPH, MDPI, vol. 19(4), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lester C. Hunt & Paraskevas Kipouros, 2023. "Energy Demand and Energy Efficiency in Developing Countries," Energies, MDPI, vol. 16(3), pages 1-26, January.
    2. Filippini, Massimo & Hunt, Lester C., 2015. "Measurement of energy efficiency based on economic foundations," Energy Economics, Elsevier, vol. 52(S1), pages 5-16.
    3. Filippini, Massimo & Hunt, Lester C., 2012. "US residential energy demand and energy efficiency: A stochastic demand frontier approach," Energy Economics, Elsevier, vol. 34(5), pages 1484-1491.
    4. Amjadi, Golnaz & Lundgren, Tommy, 2022. "Is industrial energy inefficiency transient or persistent? Evidence from Swedish manufacturing," Applied Energy, Elsevier, vol. 309(C).
    5. Liu, Fengqin & Sim, Jae-yeon & Sun, Huaping & Edziah, Bless Kofi & Adom, Philip Kofi & Song, Shunfeng, 2023. "Assessing the role of economic globalization on energy efficiency: Evidence from a global perspective," China Economic Review, Elsevier, vol. 77(C).
    6. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    7. Massimo Filippini & Lester C. Hunt, 2013. "'Underlying Energy Efficiency' in the US," CER-ETH Economics working paper series 13/181, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    8. Du, Minzhe & Wang, Bing & Zhang, Ning, 2018. "National research funding and energy efficiency: Evidence from the National Science Foundation of China," Energy Policy, Elsevier, vol. 120(C), pages 335-346.
    9. Lutz, Benjamin Johannes & Massier, Philipp & Sommerfeld, Katrin & Löschel, Andreas, 2017. "Drivers of energy efficiency in German manufacturing: A firm-level stochastic frontier analysis," ZEW Discussion Papers 17-068, ZEW - Leibniz Centre for European Economic Research.
    10. Giovanni Marin & Alessandro Palma, 2015. "Technology invention and diffusion in residential energy consumption. A stochastic frontier approach," IEFE Working Papers 81, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    11. Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Yan, Ming-Zhe & Wang, Jian-Lin & Xie, Bai-Chen, 2019. "Which provincial administrative regions in China should reduce their coal consumption? An environmental energy input requirement function based analysis," Energy Policy, Elsevier, vol. 127(C), pages 51-63.
    12. Filippini, Massimo & Hunt, Lester C. & Zorić, Jelena, 2014. "Impact of energy policy instruments on the estimated level of underlying energy efficiency in the EU residential sector," Energy Policy, Elsevier, vol. 69(C), pages 73-81.
    13. Zhang, Shanshan & Lundgren, Tommy & Zhou, Wenchao, 2016. "Energy efficiency in Swedish industry," Energy Economics, Elsevier, vol. 55(C), pages 42-51.
    14. Amjadi, Golnaz, 2020. "Essays on Energy Efficiency, Environmental Regulation and Labor Demand in Swedish Industry," Umeå Economic Studies 982, Umeå University, Department of Economics.
    15. Massimo Filippini & Lin Zhang, 2013. "Measurement of the “Underlying energy efficiency” in Chinese provinces," CER-ETH Economics working paper series 13/183, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    16. Sun, Huaping & Edziah, Bless Kofi & Sun, Chuanwang & Kporsu, Anthony Kwaku, 2019. "Institutional quality, green innovation and energy efficiency," Energy Policy, Elsevier, vol. 135(C).
    17. Zhang, Lin, 2017. "Correcting the uneven burden sharing of emission reduction across provinces in China," Energy Economics, Elsevier, vol. 64(C), pages 335-345.
    18. Massimo Filippini & Luis Orea, 2014. "Applications of the stochastic frontier approach in Energy Economics," Economics and Business Letters, Oviedo University Press, vol. 3(1), pages 35-42.
    19. Gale A. Boyd and Jonathan M. Lee, 2020. "Relative Effectiveness of Energy Efficiency Programs versus Market Based Climate Policies in the Chemical Industry," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 39-62.
    20. Akihiro Otsuka, 2018. "Regional Determinants of Energy Efficiency: Residential Energy Demand in Japan," Energies, MDPI, vol. 11(6), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:161:y:2022:i:c:s0301421521005802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.