IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i5p3063-3068.html
   My bibliography  Save this article

Energy flow analysis in pulp and paper industry

Author

Listed:
  • Hong, Gui-Bing
  • Ma, Chih-Ming
  • Chen, Hua-Wei
  • Chuang, Kai-Jen
  • Chang, Chang-Tang
  • Su, Te-Li

Abstract

This work analyzed the energy flow of the pulp and paper industry in Taiwan. The potential technology options that were examined focus on how to capture some of the energy currently lost in the processes and then identifying the areas with energy-saving potential that could also have large impacts across a variety of industries. In addition, the energy-saving potential of these options was evaluated. The energy-saving potential of the pulp and paper industry would be around 6939.9 KLOE/M. The greatest energy-saving potential lies with improving energy distribution and equipment efficiency, which would together potentially comprise 86.8% of total energy conservation. This analysis can serve as a benchmark for current pulp and paper making operations, and as a base case for stimulating changes toward more efficient energy utilization in the pulp and paper industry.

Suggested Citation

  • Hong, Gui-Bing & Ma, Chih-Ming & Chen, Hua-Wei & Chuang, Kai-Jen & Chang, Chang-Tang & Su, Te-Li, 2011. "Energy flow analysis in pulp and paper industry," Energy, Elsevier, vol. 36(5), pages 3063-3068.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:5:p:3063-3068
    DOI: 10.1016/j.energy.2011.02.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211001472
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.02.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leites, I.L. & Sama, D.A. & Lior, N., 2003. "The theory and practice of energy saving in the chemical industry: some methods for reducing thermodynamic irreversibility in chemical technology processes," Energy, Elsevier, vol. 28(1), pages 55-97.
    2. Iniyan, S & Sumathy, K, 2000. "An optimal renewable energy model for various end-uses," Energy, Elsevier, vol. 25(6), pages 563-575.
    3. Gugliermetti, F. & Bisegna, F., 2007. "Saving energy in residential buildings: The use of fully reversible windows," Energy, Elsevier, vol. 32(7), pages 1235-1247.
    4. Hong, Gui-Bing & Su, Te-Li & Lee, Jenq-Daw & Hsu, Tsung-Chi & Chen, Hua-Wei, 2010. "Energy conservation potential in Taiwanese textile industry," Energy Policy, Elsevier, vol. 38(11), pages 7048-7053, November.
    5. Chan, David Yih-Liang & Yang, Kuang-Han & Hsu, Chung-Hsuan & Chien, Min-Hsien & Hong, Gui-Bing, 2007. "Current situation of energy conservation in high energy-consuming industries in Taiwan," Energy Policy, Elsevier, vol. 35(1), pages 202-209, January.
    6. Harris, Jane & Anderson, Jane & Shafron, Walter, 2000. "Investment in energy efficiency: a survey of Australian firms," Energy Policy, Elsevier, vol. 28(12), pages 867-876, October.
    7. Ibrik, Imad H. & Mahmoud, Marwan M., 2005. "Energy efficiency improvement procedures and audit results of electrical, thermal and solar applications in Palestine," Energy Policy, Elsevier, vol. 33(5), pages 651-658, March.
    8. Kenisarin, Murat & Kenisarina, Kamola, 2007. "Energy saving potential in the residential sector of Uzbekistan," Energy, Elsevier, vol. 32(8), pages 1319-1325.
    9. Mukherjee, Kankana, 2008. "Energy use efficiency in the Indian manufacturing sector: An interstate analysis," Energy Policy, Elsevier, vol. 36(2), pages 662-672, February.
    10. Giraldo, Luis & Hyman, Barry, 1995. "Energy end-use models for pulp, paper, and paperboard mills," Energy, Elsevier, vol. 20(10), pages 1005-1019.
    11. Persson, Jörgen & Berntsson, Thore, 2009. "Influence of seasonal variations on energy-saving opportunities in a pulp mill," Energy, Elsevier, vol. 34(10), pages 1705-1714.
    12. Iniyan, S & Suganthi, L & Jagadeesan, T.R & Samuel, Anand A, 2000. "Reliability based socio economic optimal renewable energy model for India," Renewable Energy, Elsevier, vol. 19(1), pages 291-297.
    13. Thollander, Patrik & Danestig, Maria & Rohdin, Patrik, 2007. "Energy policies for increased industrial energy efficiency: Evaluation of a local energy programme for manufacturing SMEs," Energy Policy, Elsevier, vol. 35(11), pages 5774-5783, November.
    14. Yih-Liang Chan, David & Yang, Kuang-Han & Lee, Jenq-Daw & Hong, Gui-Bing, 2010. "The case study of furnace use and energy conservation in iron and steel industry," Energy, Elsevier, vol. 35(4), pages 1665-1670.
    15. Ghaddar, Nesreen & Mezher, Toufic, 1999. "Modeling of current and future energyintensity and greenhouse gas emissions ofthe Lebanese industrial sector: assessmentof mitigation options," Applied Energy, Elsevier, vol. 63(1), pages 53-74, May.
    16. Hasanbeigi, Ali & Menke, Christoph & Therdyothin, Apichit, 2010. "The use of conservation supply curves in energy policy and economic analysis: The case study of Thai cement industry," Energy Policy, Elsevier, vol. 38(1), pages 392-405, January.
    17. Steg, Linda, 2008. "Promoting household energy conservation," Energy Policy, Elsevier, vol. 36(12), pages 4449-4453, December.
    18. Sardianou, Eleni, 2007. "Estimating energy conservation patterns of Greek households," Energy Policy, Elsevier, vol. 35(7), pages 3778-3791, July.
    19. Zhang, Jianling & Wang, Guoshun, 2008. "Energy saving technologies and productive efficiency in the Chinese iron and steel sector," Energy, Elsevier, vol. 33(4), pages 525-537.
    20. Kramer, Klaas Jan & Moll, Henri C. & Nonhebel, Sanderine & Wilting, Harry C., 1999. "Greenhouse gas emissions related to Dutch food consumption," Energy Policy, Elsevier, vol. 27(4), pages 203-216, April.
    21. Neelis, Maarten & Patel, Martin & Blok, Kornelis & Haije, Wim & Bach, Pieter, 2007. "Approximation of theoretical energy-saving potentials for the petrochemical industry using energy balances for 68 key processes," Energy, Elsevier, vol. 32(7), pages 1104-1123.
    22. Lin, Jiang, 2007. "Energy conservation investments: A comparison between China and the US," Energy Policy, Elsevier, vol. 35(2), pages 916-924, February.
    23. Trygg, Louise & Karlsson, Bjorn G, 2005. "Industrial DSM in a deregulated European electricity market--a case study of 11 plants in Sweden," Energy Policy, Elsevier, vol. 33(11), pages 1445-1459, July.
    24. Andersen, Jan Peter & Hyman, Barry, 2001. "Energy and material flow models for the US steel industry," Energy, Elsevier, vol. 26(2), pages 137-159.
    25. Gruber, Edelgard & Brand, Michael, 1991. "Promoting energy conservation in small and medium-sized companies," Energy Policy, Elsevier, vol. 19(3), pages 279-287, April.
    26. Fromme, JW, 1996. "Energy conservation in the Russian manufacturing industry. Potentials and obstacles," Energy Policy, Elsevier, vol. 24(3), pages 245-252, March.
    27. Shahnawaz Ahmed, S. & Shah Majid, Md. & Novia, Hendri & Abd Rahman, Hasimah, 2007. "Fuzzy logic based energy saving technique for a central air conditioning system," Energy, Elsevier, vol. 32(7), pages 1222-1234.
    28. Palanichamy, C. & Sundar Babu, N., 2005. "Second stage energy conservation experience with a textile industry," Energy Policy, Elsevier, vol. 33(5), pages 603-609, March.
    29. Pollio, Gerald & Uchida, Koichi, 1999. "Management background, corporate governance and industrial restructuring: the Japanese upstream petroleum industry," Energy Policy, Elsevier, vol. 27(14), pages 813-832, December.
    30. Thollander, Patrik & Karlsson, Magnus & Söderström, Mats & Creutz, Dan, 2005. "Reducing industrial energy costs through energy-efficiency measures in a liberalized European electricity market: case study of a Swedish iron foundry," Applied Energy, Elsevier, vol. 81(2), pages 115-126, June.
    31. Lin, Jiang, 2007. "Corrigendum to: "Energy conservation investments: A comparison between China and the US": [Energy Policy 35 (2007) 916-924]," Energy Policy, Elsevier, vol. 35(8), pages 4401-4402, August.
    32. Siwei, Lang & Yu Joe Huang,, 1993. "Energy conservation standard for space heating in Chinese urban residential buildings," Energy, Elsevier, vol. 18(8), pages 871-892.
    33. Blok, Kornelis & Worrell, Ernst & Cuelenaere, Rob & Turkenburg, Wim, 1993. "The cost effectiveness of CO2 emission reduction achieved by energy conservation," Energy Policy, Elsevier, vol. 21(6), pages 656-667, June.
    34. Ross, Marc, 1987. "Industrial energy conservation and the steel industry of the United States," Energy, Elsevier, vol. 12(10), pages 1135-1152.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhagaban Behera, 2013. "Drug Trafficking as a Non-Traditional Security Threat to Central Asian States," Jadavpur Journal of International Relations, , vol. 17(2), pages 229-251, December.
    2. Bradley, Peter & Leach, Matthew & Torriti, Jacopo, 2013. "A review of the costs and benefits of demand response for electricity in the UK," Energy Policy, Elsevier, vol. 52(C), pages 312-327.
    3. Tian, Jinping & Shi, Han & Li, Xing & Chen, Lujun, 2012. "Measures and potentials of energy-saving in a Chinese fine chemical industrial park," Energy, Elsevier, vol. 46(1), pages 459-470.
    4. Verma, Om Prakash & Manik, Gaurav & Sethi, Sushant Kumar, 2019. "A comprehensive review of renewable energy source on energy optimization of black liquor in MSE using steady and dynamic state modeling, simulation and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 90-109.
    5. Bouzarovski, Stefan & Petrova, Saska & Sarlamanov, Robert, 2012. "Energy poverty policies in the EU: A critical perspective," Energy Policy, Elsevier, vol. 49(C), pages 76-82.
    6. Valdes, Javier & Masip Macia, Yunesky & Dorner, Wolfgang & Ramirez Camargo, Luis, 2021. "Unsupervised grouping of industrial electricity demand profiles: Synthetic profiles for demand-side management applications," Energy, Elsevier, vol. 215(PA).
    7. Brown, Marilyn A. & Gumerman, Etan & Sun, Xiaojing & Sercy, Kenneth & Kim, Gyungwon, 2012. "Myths and facts about electricity in the U.S. South," Energy Policy, Elsevier, vol. 40(C), pages 231-241.
    8. Kendel, Adnane & Lazaric, Nathalie & Maréchal, Kevin, 2017. "What do people ‘learn by looking’ at direct feedback on their energy consumption? Results of a field study in Southern France," Energy Policy, Elsevier, vol. 108(C), pages 593-605.
    9. Buchanan, Kathryn & Russo, Riccardo & Anderson, Ben, 2015. "The question of energy reduction: The problem(s) with feedback," Energy Policy, Elsevier, vol. 77(C), pages 89-96.
    10. Kong, Lingbo & Price, Lynn & Hasanbeigi, Ali & Liu, Huanbin & Li, Jigeng, 2013. "Potential for reducing paper mill energy use and carbon dioxide emissions through plant-wide energy audits: A case study in China," Applied Energy, Elsevier, vol. 102(C), pages 1334-1342.
    11. Liu, Liwei & Ye, Junhong & Zhao, Yufei & Zhao, Erdong, 2015. "The plight of the biomass power generation industry in China – A supply chain risk perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 680-692.
    12. Loganthurai, P. & Rajasekaran, V. & Gnanambal, K., 2016. "Evolutionary algorithm based optimum scheduling of processing units in rice industry to reduce peak demand," Energy, Elsevier, vol. 107(C), pages 419-430.
    13. Sa, Aida & Thollander, Patrik & Cagno, Enrico, 2017. "Assessing the driving factors for energy management program adoption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 538-547.
    14. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Foley, Aoife M. & Rooney, David, 2022. "Decarbonizing the pulp and paper industry: A critical and systematic review of sociotechnical developments and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Darby, Sarah J., 2012. "Metering: EU policy and implications for fuel poor households," Energy Policy, Elsevier, vol. 49(C), pages 98-106.
    16. Florian Jaehn & Raisa Juopperi, 2019. "A Description of Supply Chain Planning Problems in the Paper Industry with Literature Review," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(01), pages 1-39, February.
    17. Bradley, Peter & Coke, Alexia & Leach, Matthew, 2016. "Financial incentive approaches for reducing peak electricity demand, experience from pilot trials with a UK energy provider," Energy Policy, Elsevier, vol. 98(C), pages 108-120.
    18. Utlu, Zafer & Kincay, Olcay, 2013. "An assessment of a pulp and paper mill through energy and exergy analyses," Energy, Elsevier, vol. 57(C), pages 565-573.
    19. Cotton, Deborah & De Mello, Lurion, 2014. "Econometric analysis of Australian emissions markets and electricity prices," Energy Policy, Elsevier, vol. 74(C), pages 475-485.
    20. Lu, Shyi-Min & Lu, Ching & Tseng, Kuo-Tung & Chen, Falin & Chen, Chen-Liang, 2013. "Energy-saving potential of the industrial sector of Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 674-683.
    21. Akvile Lawrence & Patrik Thollander & Magnus Karlsson, 2018. "Drivers, Barriers, and Success Factors for Improving Energy Management in the Pulp and Paper Industry," Sustainability, MDPI, vol. 10(6), pages 1-35, June.
    22. Michael Schoepf & Martin Weibelzahl & Lisa Nowka, 2018. "The Impact of Substituting Production Technologies on the Economic Demand Response Potential in Industrial Processes," Energies, MDPI, vol. 11(9), pages 1-13, August.
    23. Chen, Hua-Wei & Hsu, Chung-Hsuan & Hong, Gui-Bing, 2012. "The case study of energy flow analysis and strategy in pulp and paper industry," Energy Policy, Elsevier, vol. 43(C), pages 448-455.
    24. Lin, Hsin-Chiu & Chan, David Yih-Liang & Lin, Wei-Chun & Hsu, Chung-Hsuan & Hong, Gui-Bing, 2014. "Status of energy conservation in Taiwan's pulp and paper industry," Energy, Elsevier, vol. 73(C), pages 680-685.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Gui-Bing & Su, Te-Li & Lee, Jenq-Daw & Hsu, Tsung-Chi & Chen, Hua-Wei, 2010. "Energy conservation potential in Taiwanese textile industry," Energy Policy, Elsevier, vol. 38(11), pages 7048-7053, November.
    2. Lin, Hsin-Chiu & Chan, David Yih-Liang & Lin, Wei-Chun & Hsu, Chung-Hsuan & Hong, Gui-Bing, 2014. "Status of energy conservation in Taiwan's pulp and paper industry," Energy, Elsevier, vol. 73(C), pages 680-685.
    3. Yih-Liang Chan, David & Yang, Kuang-Han & Lee, Jenq-Daw & Hong, Gui-Bing, 2010. "The case study of furnace use and energy conservation in iron and steel industry," Energy, Elsevier, vol. 35(4), pages 1665-1670.
    4. Chen, Hua-Wei & Hsu, Chung-Hsuan & Hong, Gui-Bing, 2012. "The case study of energy flow analysis and strategy in pulp and paper industry," Energy Policy, Elsevier, vol. 43(C), pages 448-455.
    5. Chan, David Yih-Liang & Yang, Kuang-Han & Hsu, Chung-Hsuan & Chien, Min-Hsien & Hong, Gui-Bing, 2007. "Current situation of energy conservation in high energy-consuming industries in Taiwan," Energy Policy, Elsevier, vol. 35(1), pages 202-209, January.
    6. Saidur, R. & Rahim, N.A. & Ping, H.W. & Jahirul, M.I. & Mekhilef, S. & Masjuki, H.H., 2009. "Energy and emission analysis for industrial motors in Malaysia," Energy Policy, Elsevier, vol. 37(9), pages 3650-3658, September.
    7. Saidur, R. & Rahim, N.A. & Masjuki, H.H. & Mekhilef, S. & Ping, H.W. & Jamaluddin, M.F., 2009. "End-use energy analysis in the Malaysian industrial sector," Energy, Elsevier, vol. 34(2), pages 153-158.
    8. Saidur, R., 2010. "A review on electrical motors energy use and energy savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 877-898, April.
    9. Su, Te-Li & Chan, David Yih-Liang & Hung, Ching-Yuan & Hong, Gui-Bing, 2013. "The status of energy conservation in Taiwan's cement industry," Energy Policy, Elsevier, vol. 60(C), pages 481-486.
    10. Sreekanth, K.J., 2016. "Review on integrated strategies for energy policy planning and evaluation of GHG mitigation alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 837-850.
    11. Saidur, R. & Mekhilef, S., 2010. "Energy use, energy savings and emission analysis in the Malaysian rubber producing industries," Applied Energy, Elsevier, vol. 87(8), pages 2746-2758, August.
    12. Li, Yingjian & Li, Jiezhi & Qiu, Qi & Xu, Yafei, 2010. "Energy auditing and energy conservation potential for glass works," Applied Energy, Elsevier, vol. 87(8), pages 2438-2446, August.
    13. Saidur, R. & Rahim, N.A. & Hasanuzzaman, M., 2010. "A review on compressed-air energy use and energy savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1135-1153, May.
    14. Lin, Boqiang & Wu, Ya & Zhang, Li, 2011. "Estimates of the potential for energy conservation in the Chinese steel industry," Energy Policy, Elsevier, vol. 39(6), pages 3680-3689, June.
    15. Renato M. Lazzarin & Marco Noro, 2017. "Energy efficiency opportunities in the service plants of cast iron foundries in Italy," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(2), pages 96-109.
    16. Kaplowitz, Michael D. & Thorp, Laurie & Coleman, Kayla & Kwame Yeboah, Felix, 2012. "Energy conservation attitudes, knowledge, and behaviors in science laboratories," Energy Policy, Elsevier, vol. 50(C), pages 581-591.
    17. Thollander, Patrik & Backlund, Sandra & Trianni, Andrea & Cagno, Enrico, 2013. "Beyond barriers – A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden," Applied Energy, Elsevier, vol. 111(C), pages 636-643.
    18. Aranda-Usón, Alfonso & Ferreira, Germán & Mainar-Toledo, M.D. & Scarpellini, Sabina & Llera Sastresa, Eva, 2012. "Energy consumption analysis of Spanish food and drink, textile, chemical and non-metallic mineral products sectors," Energy, Elsevier, vol. 42(1), pages 477-485.
    19. Schlomann, Barbara & Schleich, Joachim, 2015. "Adoption of low-cost energy efficiency measures in the tertiary sector—An empirical analysis based on energy survey data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1127-1133.
    20. Kalantzis, Fotios & Revoltella, Debora, 2019. "How energy audits promote SMEs' energy efficiency investment," EIB Working Papers 2019/02, European Investment Bank (EIB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:5:p:3063-3068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.