IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v102y2013icp1334-1342.html
   My bibliography  Save this article

Potential for reducing paper mill energy use and carbon dioxide emissions through plant-wide energy audits: A case study in China

Author

Listed:
  • Kong, Lingbo
  • Price, Lynn
  • Hasanbeigi, Ali
  • Liu, Huanbin
  • Li, Jigeng

Abstract

The pulp and paper industry is one of the most energy-intensive industries worldwide. In 2007, it accounted for 5% of total global industrial energy consumption and 2% of direct industrial carbon dioxide (CO2) emissions. An energy audit is a primary step toward improving energy efficiency at the facility level. This paper describes a plant-wide energy audit aimed at identifying energy conservation and CO2 mitigation opportunities at a paper mill in Guangdong province, China. We describe the energy audit methods, relevant Chinese standards, methods of calculating energy and carbon indicators, baseline energy consumption and CO2 emissions of the audited paper mill, and nine energy-efficiency improvement opportunities identified by the audit. For each of the nine options, we evaluate the energy conservation and associated CO2 mitigation potential. The total technical energy conservation potential for these nine opportunities is 967.8terajoules (TJ), and the total CO2 mitigation potential is equal to 93,453tonnes CO2 annually, representing 14.4% and 14.7%, respectively, of the mill’s total energy consumption and CO2 emissions during the audit period.

Suggested Citation

  • Kong, Lingbo & Price, Lynn & Hasanbeigi, Ali & Liu, Huanbin & Li, Jigeng, 2013. "Potential for reducing paper mill energy use and carbon dioxide emissions through plant-wide energy audits: A case study in China," Applied Energy, Elsevier, vol. 102(C), pages 1334-1342.
  • Handle: RePEc:eee:appene:v:102:y:2013:i:c:p:1334-1342
    DOI: 10.1016/j.apenergy.2012.07.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912005259
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.07.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klugman, Sofia & Karlsson, Magnus & Moshfegh, Bahram, 2007. "A Scandinavian chemical wood pulp mill. Part 1. Energy audit aiming at efficiency measures," Applied Energy, Elsevier, vol. 84(3), pages 326-339, March.
    2. Chan, David Yih-Liang & Yang, Kuang-Han & Hsu, Chung-Hsuan & Chien, Min-Hsien & Hong, Gui-Bing, 2007. "Current situation of energy conservation in high energy-consuming industries in Taiwan," Energy Policy, Elsevier, vol. 35(1), pages 202-209, January.
    3. Hong, Gui-Bing & Ma, Chih-Ming & Chen, Hua-Wei & Chuang, Kai-Jen & Chang, Chang-Tang & Su, Te-Li, 2011. "Energy flow analysis in pulp and paper industry," Energy, Elsevier, vol. 36(5), pages 3063-3068.
    4. Neelis, Maarten & Ramirez-Ramirez, Andrea & Patel, Martin & Farla, Jacco & Boonekamp, Piet & Blok, Kornelis, 2007. "Energy efficiency developments in the Dutch energy-intensive manufacturing industry, 1980-2003," Energy Policy, Elsevier, vol. 35(12), pages 6112-6131, December.
    5. Nathalie Trudeau & Cecilia Tam & Dagmar Graczyk & Peter Taylor, 2011. "Energy Transition for Industry: India and the Global Context," IEA Energy Papers 2011/2, OECD Publishing.
    6. Hasanbeigi, Ali & Price, Lynn & Lu, Hongyou & Lan, Wang, 2010. "Analysis of energy-efficiency opportunities for the cement industry in Shandong Province, China: A case study of 16 cement plants," Energy, Elsevier, vol. 35(8), pages 3461-3473.
    7. Li, Yingjian & Li, Jiezhi & Qiu, Qi & Xu, Yafei, 2010. "Energy auditing and energy conservation potential for glass works," Applied Energy, Elsevier, vol. 87(8), pages 2438-2446, August.
    8. Abdelaziz, E.A. & Saidur, R. & Mekhilef, S., 2011. "A review on energy saving strategies in industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 150-168, January.
    9. Shen, Bo & Price, Lynn & Lu, Hongyou, 2012. "Energy audit practices in China: National and local experiences and issues," Energy Policy, Elsevier, vol. 46(C), pages 346-358.
    10. Joachim Schleich, 2004. "Do energy audits help reduce barriers to energy efficiency? An empirical analysis for Germany," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 2(3), pages 226-239.
    11. Saidur, R. & Rahim, N.A. & Masjuki, H.H. & Mekhilef, S. & Ping, H.W. & Jamaluddin, M.F., 2009. "End-use energy analysis in the Malaysian industrial sector," Energy, Elsevier, vol. 34(2), pages 153-158.
    12. Phylipsen, Dian & Blok, Kornelis & Worrell, Ernst & Beer, Jeroen de, 2002. "Benchmarking the energy efficiency of Dutch industry: an assessment of the expected effect on energy consumption and CO2 emissions," Energy Policy, Elsevier, vol. 30(8), pages 663-679, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Herre, Lars & Tomasini, Federica & Paridari, Kaveh & Söder, Lennart & Nordström, Lars, 2020. "Simplified model of integrated paper mill for optimal bidding in energy and reserve markets," Applied Energy, Elsevier, vol. 279(C).
    2. Satu Lipiäinen & Eeva-Lotta Apajalahti & Esa Vakkilainen, 2023. "Decarbonization Prospects for the European Pulp and Paper Industry: Different Development Pathways and Needed Actions," Energies, MDPI, vol. 16(2), pages 1-18, January.
    3. Olkis, C. & Santori, G. & Brandani, S., 2018. "An Adsorption Reverse Electrodialysis system for the generation of electricity from low-grade heat," Applied Energy, Elsevier, vol. 231(C), pages 222-234.
    4. May, Gökan & Barletta, Ilaria & Stahl, Bojan & Taisch, Marco, 2015. "Energy management in production: A novel method to develop key performance indicators for improving energy efficiency," Applied Energy, Elsevier, vol. 149(C), pages 46-61.
    5. Salvatori, Simone & Benedetti, Miriam & Bonfà, Francesca & Introna, Vito & Ubertini, Stefano, 2018. "Inter-sectorial benchmarking of compressed air generation energy performance: Methodology based on real data gathering in large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 217(C), pages 266-280.
    6. Karali, Nihan & Xu, Tengfang & Sathaye, Jayant, 2014. "Reducing energy consumption and CO2 emissions by energy efficiency measures and international trading: A bottom-up modeling for the U.S. iron and steel sector," Applied Energy, Elsevier, vol. 120(C), pages 133-146.
    7. Mesfun, Sennai & Toffolo, Andrea, 2013. "Optimization of process integration in a Kraft pulp and paper mill – Evaporation train and CHP system," Applied Energy, Elsevier, vol. 107(C), pages 98-110.
    8. Chen, Xiaobin & Man, Yi & Zheng, Qifu & Hu, Yusha & Li, Jigeng & Hong, Mengna, 2019. "Industrial verification of energy saving for the single-tier cylinder based paper drying process," Energy, Elsevier, vol. 170(C), pages 261-272.
    9. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Foley, Aoife M. & Rooney, David, 2022. "Decarbonizing the pulp and paper industry: A critical and systematic review of sociotechnical developments and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. Kong, Lingbo & Hasanbeigi, Ali & Price, Lynn & Liu, Huanbin, 2017. "Energy conservation and CO2 mitigation potentials in the Chinese pulp and paper industry," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 74-84.
    11. Florian Jaehn & Raisa Juopperi, 2019. "A Description of Supply Chain Planning Problems in the Paper Industry with Literature Review," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(01), pages 1-39, February.
    12. Peng, Lihong & Zeng, Xiaoling & Wang, Yejun & Hong, Gui-Bing, 2015. "Analysis of energy efficiency and carbon dioxide reduction in the Chinese pulp and paper industry," Energy Policy, Elsevier, vol. 80(C), pages 65-75.
    13. Luis Miguel Calvo & Rosario Domingo, 2017. "CO 2 Emissions Reduction and Energy Efficiency Improvements in Paper Making Drying Process Control by Sensors," Sustainability, MDPI, vol. 9(4), pages 1-17, March.
    14. Akvile Lawrence & Patrik Thollander & Magnus Karlsson, 2018. "Drivers, Barriers, and Success Factors for Improving Energy Management in the Pulp and Paper Industry," Sustainability, MDPI, vol. 10(6), pages 1-35, June.
    15. Salahi, Niloofar & Jafari, Mohsen A., 2016. "Energy-Performance as a driver for optimal production planning," Applied Energy, Elsevier, vol. 174(C), pages 88-100.
    16. Marco Briceño-León & Dennys Pazmiño-Quishpe & Jean-Michel Clairand & Guillermo Escrivá-Escrivá, 2021. "Energy Efficiency Measures in Bakeries toward Competitiveness and Sustainability—Case Studies in Quito, Ecuador," Sustainability, MDPI, vol. 13(9), pages 1-20, May.
    17. Teijo Palander & Jari Takkinen, 2021. "The Optimum Wood Procurement Scenario and Its Dynamic Management for Integrated Energy and Material Production in Carbon-Neutral Forest Industry," Energies, MDPI, vol. 14(15), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akvile Lawrence & Patrik Thollander & Magnus Karlsson, 2018. "Drivers, Barriers, and Success Factors for Improving Energy Management in the Pulp and Paper Industry," Sustainability, MDPI, vol. 10(6), pages 1-35, June.
    2. Madlool, N.A. & Saidur, R. & Hossain, M.S. & Rahim, N.A., 2011. "A critical review on energy use and savings in the cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2042-2060, May.
    3. Schlomann, Barbara & Schleich, Joachim, 2015. "Adoption of low-cost energy efficiency measures in the tertiary sector—An empirical analysis based on energy survey data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1127-1133.
    4. Fernando, Yudi & Hor, Wei Lin, 2017. "Impacts of energy management practices on energy efficiency and carbon emissions reduction: A survey of malaysian manufacturing firms," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 62-73.
    5. Madlool, N.A. & Saidur, R. & Rahim, N.A. & Kamalisarvestani, M., 2013. "An overview of energy savings measures for cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 18-29.
    6. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
    7. Fernández, David & Pozo, Carlos & Folgado, Rubén & Jiménez, Laureano & Guillén-Gosálbez, Gonzalo, 2018. "Productivity and energy efficiency assessment of existing industrial gases facilities via data envelopment analysis and the Malmquist index," Applied Energy, Elsevier, vol. 212(C), pages 1563-1577.
    8. Chen, Hua-Wei & Hsu, Chung-Hsuan & Hong, Gui-Bing, 2012. "The case study of energy flow analysis and strategy in pulp and paper industry," Energy Policy, Elsevier, vol. 43(C), pages 448-455.
    9. Perroni, Marcos G. & Gouvea da Costa, Sergio E. & Pinheiro de Lima, Edson & Vieira da Silva, Wesley & Tortato, Ubiratã, 2018. "Measuring energy performance: A process based approach," Applied Energy, Elsevier, vol. 222(C), pages 540-553.
    10. Zhao, Xiaofan & Li, Huimin & Wu, Liang & Qi, Ye, 2014. "Implementation of energy-saving policies in China: How local governments assisted industrial enterprises in achieving energy-saving targets," Energy Policy, Elsevier, vol. 66(C), pages 170-184.
    11. Saidur, R. & Hossain, M.S. & Islam, M.R. & Fayaz, H. & Mohammed, H.A., 2011. "A review on kiln system modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2487-2500, June.
    12. Salvatori, Simone & Benedetti, Miriam & Bonfà, Francesca & Introna, Vito & Ubertini, Stefano, 2018. "Inter-sectorial benchmarking of compressed air generation energy performance: Methodology based on real data gathering in large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 217(C), pages 266-280.
    13. Saidur, R. & Rahim, N.A. & Ping, H.W. & Jahirul, M.I. & Mekhilef, S. & Masjuki, H.H., 2009. "Energy and emission analysis for industrial motors in Malaysia," Energy Policy, Elsevier, vol. 37(9), pages 3650-3658, September.
    14. Yelena Petrenko & Igor Denisov & Gaukhar Koshebayeva & Valeriy Biryukov, 2020. "Energy Efficiency of Kazakhstan Enterprises: Unexpected Findings," Energies, MDPI, vol. 13(5), pages 1-20, February.
    15. Li, Yingjian & Li, Jiezhi & Qiu, Qi & Xu, Yafei, 2010. "Energy auditing and energy conservation potential for glass works," Applied Energy, Elsevier, vol. 87(8), pages 2438-2446, August.
    16. Vaibhav Chaturvedi & Priyadarshi Shukla, 2014. "Role of energy efficiency in climate change mitigation policy for India: assessment of co-benefits and opportunities within an integrated assessment modeling framework," Climatic Change, Springer, vol. 123(3), pages 597-609, April.
    17. Loganthurai, P. & Rajasekaran, V. & Gnanambal, K., 2016. "Evolutionary algorithm based optimum scheduling of processing units in rice industry to reduce peak demand," Energy, Elsevier, vol. 107(C), pages 419-430.
    18. Sa, Aida & Thollander, Patrik & Cagno, Enrico, 2017. "Assessing the driving factors for energy management program adoption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 538-547.
    19. Wang, Ning & Wen, Zongguo & Liu, Mingqi & Guo, Jie, 2016. "Constructing an energy efficiency benchmarking system for coal production," Applied Energy, Elsevier, vol. 169(C), pages 301-308.
    20. Dhayaneswaran, Y. & Ashok Kumar, L., 2014. "A study on current characteristics of induction motor while operating at its base frequency in textile industry," Energy, Elsevier, vol. 74(C), pages 340-345.

    More about this item

    Keywords

    Energy audit; Paper mill; Energy efficiency; CO2 mitigation;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:102:y:2013:i:c:p:1334-1342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.