IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v170y2019icp261-272.html
   My bibliography  Save this article

Industrial verification of energy saving for the single-tier cylinder based paper drying process

Author

Listed:
  • Chen, Xiaobin
  • Man, Yi
  • Zheng, Qifu
  • Hu, Yusha
  • Li, Jigeng
  • Hong, Mengna

Abstract

The paper drying process has the highest level of energy consumption in the pulp and paper production process. Analysis and optimization of the energy system during the paper drying process is critical for improving the energy efficiency of the entire paper mill. In the existing model for the paper drying process, the solution requires accurate boundary conditions such as the air temperature and humidity of the pocket area and the cylinder surface temperature, which are very difficult to obtain in the papermaking process. This can result in significant deviations between the model solution and the actual production process. This paper focuses on the single-tier dryer cylinder-based paper drying process that has been widely used with high-speed papermaking machines in recent years. A mathematical model is proposed based on real-time data. The verification via industrial production demonstrates that the proposed model is reliable for the paper drying process. Based on the simulation results, two optimization operations have been proposed. The energy consumption decreases from 1.51 t steam/t paper to 1.44 t steam/t paper, 4.6% of the steam and 1.26 × 106 RMB can be saved for a medium-scale paper mill with the annual production capacity of 105 t paper.

Suggested Citation

  • Chen, Xiaobin & Man, Yi & Zheng, Qifu & Hu, Yusha & Li, Jigeng & Hong, Mengna, 2019. "Industrial verification of energy saving for the single-tier cylinder based paper drying process," Energy, Elsevier, vol. 170(C), pages 261-272.
  • Handle: RePEc:eee:energy:v:170:y:2019:i:c:p:261-272
    DOI: 10.1016/j.energy.2018.12.152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218325246
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.12.152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Helin, Kristo & Käki, Anssi & Zakeri, Behnam & Lahdelma, Risto & Syri, Sanna, 2017. "Economic potential of industrial demand side management in pulp and paper industry," Energy, Elsevier, vol. 141(C), pages 1681-1694.
    2. Isaksson, Johan & Jansson, Mikael & Åsblad, Anders & Berntsson, Thore, 2016. "Transportation fuel production from gasified biomass integrated with a pulp and paper mill – Part A: Heat integration and system performance," Energy, Elsevier, vol. 103(C), pages 557-571.
    3. Peng, Lihong & Zeng, Xiaoling & Wang, Yejun & Hong, Gui-Bing, 2015. "Analysis of energy efficiency and carbon dioxide reduction in the Chinese pulp and paper industry," Energy Policy, Elsevier, vol. 80(C), pages 65-75.
    4. Kong, Lingbo & Price, Lynn & Hasanbeigi, Ali & Liu, Huanbin & Li, Jigeng, 2013. "Potential for reducing paper mill energy use and carbon dioxide emissions through plant-wide energy audits: A case study in China," Applied Energy, Elsevier, vol. 102(C), pages 1334-1342.
    5. Di Marco, Paolo & Frigo, Stefano & Gabbrielli, Roberto & Pecchia, Stefano, 2016. "Mathematical modelling and energy performance assessment of air impingement drying systems for the production of tissue paper," Energy, Elsevier, vol. 114(C), pages 201-213.
    6. Laurijssen, Jobien & De Gram, Frans J. & Worrell, Ernst & Faaij, Andre, 2010. "Optimizing the energy efficiency of conventional multi-cylinder dryers in the paper industry," Energy, Elsevier, vol. 35(9), pages 3738-3750.
    7. Fleiter, Tobias & Fehrenbach, Daniel & Worrell, Ernst & Eichhammer, Wolfgang, 2012. "Energy efficiency in the German pulp and paper industry – A model-based assessment of saving potentials," Energy, Elsevier, vol. 40(1), pages 84-99.
    8. Lawrence, Akvile & Karlsson, Magnus & Thollander, Patrik, 2018. "Effects of firm characteristics and energy management for improving energy efficiency in the pulp and paper industry," Energy, Elsevier, vol. 153(C), pages 825-835.
    9. Wang, Yutao & Yang, Xuechun & Sun, Mingxing & Ma, Lei & Li, Xiao & Shi, Lei, 2016. "Estimating carbon emissions from the pulp and paper industry: A case study," Applied Energy, Elsevier, vol. 184(C), pages 779-789.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lai, Changzhi & Wang, Yu & Fan, Kai & Cai, Qilin & Ye, Qing & Pang, Haoqiang & Wu, Xi, 2022. "An improved forecasting model of short-term electric load of papermaking enterprises for production line optimization," Energy, Elsevier, vol. 245(C).
    2. Nejad, Alireza Mahdavi, 2021. "A new drying approach deploying solid-solid phase change material: A numerical study," Energy, Elsevier, vol. 232(C).
    3. Thanongsak Imjai & Chirawat Wattanapanich & Uhamard Madardam & Reyes Garcia, 2021. "Analysis of Ink/Toner Savings of English and Thai Ecofonts for Sustainable Printing," Sustainability, MDPI, vol. 13(7), pages 1-17, April.
    4. Mariusz Reczulski & Włodzimierz Szewczyk & Michał Kuczkowski, 2023. "Possibilities of Reducing the Heat Energy Consumption in a Tissue Paper Machine—Case Study," Energies, MDPI, vol. 16(9), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Foley, Aoife M. & Rooney, David, 2022. "Decarbonizing the pulp and paper industry: A critical and systematic review of sociotechnical developments and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Herre, Lars & Tomasini, Federica & Paridari, Kaveh & Söder, Lennart & Nordström, Lars, 2020. "Simplified model of integrated paper mill for optimal bidding in energy and reserve markets," Applied Energy, Elsevier, vol. 279(C).
    3. Akvile Lawrence & Patrik Thollander & Magnus Karlsson, 2018. "Drivers, Barriers, and Success Factors for Improving Energy Management in the Pulp and Paper Industry," Sustainability, MDPI, vol. 10(6), pages 1-35, June.
    4. Akvile Lawrence & Patrik Thollander & Mariana Andrei & Magnus Karlsson, 2019. "Specific Energy Consumption/Use (SEC) in Energy Management for Improving Energy Efficiency in Industry: Meaning, Usage and Differences," Energies, MDPI, vol. 12(2), pages 1-22, January.
    5. Luis Miguel Calvo & Rosario Domingo, 2017. "CO 2 Emissions Reduction and Energy Efficiency Improvements in Paper Making Drying Process Control by Sensors," Sustainability, MDPI, vol. 9(4), pages 1-17, March.
    6. Valdes, Javier & Masip Macia, Yunesky & Dorner, Wolfgang & Ramirez Camargo, Luis, 2021. "Unsupervised grouping of industrial electricity demand profiles: Synthetic profiles for demand-side management applications," Energy, Elsevier, vol. 215(PA).
    7. Pusnik, M. & Al-Mansour, F. & Sucic, B. & Cesen, M., 2017. "Trends and prospects of energy efficiency development in Slovenian industry," Energy, Elsevier, vol. 136(C), pages 52-62.
    8. Satu Kähkönen & Esa Vakkilainen & Timo Laukkanen, 2019. "Impact of Structural Changes on Energy Efficiency of Finnish Pulp and Paper Industry," Energies, MDPI, vol. 12(19), pages 1-12, September.
    9. Utlu, Zafer & Kincay, Olcay, 2013. "An assessment of a pulp and paper mill through energy and exergy analyses," Energy, Elsevier, vol. 57(C), pages 565-573.
    10. Minh Nguyen Dat & Kien Duong Trung & Hoang Truong Huy, 2021. "Energy Benchmarking Management for Beer and Beverage Industry in Vietnam," Management, Sciendo, vol. 25(2), pages 36-58, December.
    11. Hepburn, Cameron & Teytelboym, Alexander & Cohen, Francois, 2018. "Is Natural Capital Really Substitutable?," INET Oxford Working Papers 2018-12, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    12. Teijo Palander & Kalle Kärhä, 2019. "Improving Energy Efficiency in a Synchronized Road-Transportation System by Using a TFMC (Transportation Fleet-Management Control) in Finland," Energies, MDPI, vol. 12(4), pages 1-15, February.
    13. Satu Lipiäinen & Eeva-Lotta Apajalahti & Esa Vakkilainen, 2023. "Decarbonization Prospects for the European Pulp and Paper Industry: Different Development Pathways and Needed Actions," Energies, MDPI, vol. 16(2), pages 1-18, January.
    14. Peng, Lihong & Zeng, Xiaoling & Wang, Yejun & Hong, Gui-Bing, 2015. "Analysis of energy efficiency and carbon dioxide reduction in the Chinese pulp and paper industry," Energy Policy, Elsevier, vol. 80(C), pages 65-75.
    15. Ma, Xiaotian & Shen, Xiaoxu & Qi, Congcong & Ye, Liping & Yang, Donglu & Hong, Jinglan, 2018. "Energy and carbon coupled water footprint analysis for Kraft wood pulp paper production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 253-261.
    16. Lin MA & Jiayu HU, 2018. "An Analysis of the Eco-Innovation Mechanism and Policies in the Pulp and Paper Industry Based on Coupled Game Theory and System Dynamics," Sustainability, MDPI, vol. 10(10), pages 1-25, September.
    17. Gradov, Dmitry Vladimirovich & Yusuf, Yusuf Oluwatoki & Ohjainen, Jussi & Suuronen, Jarkko & Eskola, Roope & Roininen, Lassi & Koiranen, Tuomas, 2022. "Modelling of a continuous veneer drying unit of industrial scale and model-based ANOVA of the energy efficiency," Energy, Elsevier, vol. 244(PA).
    18. Rogers, John Geoffrey & Cooper, Samuel J. & Norman, Jon B., 2018. "Uses of industrial energy benchmarking with reference to the pulp and paper industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 23-37.
    19. Wu, Rui & Geng, Yong & Cui, Xiaowei & Gao, Ziyan & Liu, Zhiqing, 2019. "Reasons for recent stagnancy of carbon emissions in China's industrial sectors," Energy, Elsevier, vol. 172(C), pages 457-466.
    20. Man, Yi & Li, Jigeng & Hong, Mengna & Han, Yulin, 2020. "Energy transition for the low-carbon pulp and paper industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:170:y:2019:i:c:p:261-272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.