IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v46y2012i1p459-470.html
   My bibliography  Save this article

Measures and potentials of energy-saving in a Chinese fine chemical industrial park

Author

Listed:
  • Tian, Jinping
  • Shi, Han
  • Li, Xing
  • Chen, Lujun

Abstract

This study aims to fill the gap in the literature on energy efficiency and economic analysis of energy-saving measures at the industrial park level by conducting a case study of a typical fine chemical industrial park in China. Based on a five-year intensive data collection, the authors quantitatively examined the energy consumption and energy efficiency of the industrial park in question and evaluated the energy-saving potentials and cost-effectiveness of ten types of energy-saving measures by means of a bottom-up method and scenario analysis. It was found that the energy efficiencies of its two combined heat and power plants in 2007 were 81.5% and 56% respectively. Energy efficiency of the fine chemical industrial park was around 4625.7 GJ per million USD of gross industrial output value, which was only between 20% and 25% of that of the sector of manufacturing raw chemical materials and chemical products in China. The energy-saving potentials of the ten measures amount to about 11% of energy consumption of the industrial park in 2007. A total capital investment of approximately 35 million USD would be needed to realise the potentials. The technical measures explored in the study are generally replicable in other Chinese fine chemical industrial parks.

Suggested Citation

  • Tian, Jinping & Shi, Han & Li, Xing & Chen, Lujun, 2012. "Measures and potentials of energy-saving in a Chinese fine chemical industrial park," Energy, Elsevier, vol. 46(1), pages 459-470.
  • Handle: RePEc:eee:energy:v:46:y:2012:i:1:p:459-470
    DOI: 10.1016/j.energy.2012.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212006159
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leites, I.L. & Sama, D.A. & Lior, N., 2003. "The theory and practice of energy saving in the chemical industry: some methods for reducing thermodynamic irreversibility in chemical technology processes," Energy, Elsevier, vol. 28(1), pages 55-97.
    2. Gunter Festel & Yong Geng, 2005. "Chemical Industry Parks in China," Springer Books, in: Gunter Festel & Udo Oels & Andreas Kreimeyer & Max Zedtwitz (ed.), The Chemical and Pharmaceutical Industry in China, chapter 5, pages 53-62, Springer.
    3. Kapil, Ankur & Bulatov, Igor & Smith, Robin & Kim, Jin-Kuk, 2012. "Process integration of low grade heat in process industry with district heating networks," Energy, Elsevier, vol. 44(1), pages 11-19.
    4. Ebrahim, Mubarak & Kawari, Al-, 2000. "Pinch technology: an efficient tool for chemical-plant energy and capital-cost saving," Applied Energy, Elsevier, vol. 65(1-4), pages 45-49, April.
    5. Wang, Yao & Du, Jian & Wu, Jintao & He, Gaohong & Kuang, Guozhu & Fan, Xishan & Yao, Pingjing & Lu, Shenglin & Li, Peiyi & Tao, Jigang & Wan, Yong & Kuang, Zhengyang & Tian, Yong, 2003. "Application of total process energy-integration in retrofitting an ammonia plant," Applied Energy, Elsevier, vol. 76(4), pages 467-480, December.
    6. Neelis, Maarten & Patel, Martin & Blok, Kornelis & Haije, Wim & Bach, Pieter, 2007. "Approximation of theoretical energy-saving potentials for the petrochemical industry using energy balances for 68 key processes," Energy, Elsevier, vol. 32(7), pages 1104-1123.
    7. Matsuda, Kazuo & Hirochi, Yoshiichi & Tatsumi, Hiroyuki & Shire, Tim, 2009. "Applying heat integration total site based pinch technology to a large industrial area in Japan to further improve performance of highly efficient process plants," Energy, Elsevier, vol. 34(10), pages 1687-1692.
    8. Frans M. Dieleman & Andreas Faludi, 1998. "Randstad, Rhine‐Ruhr and Flemish diamond as one polynucleated macro‐region?," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 89(3), pages 320-327, August.
    9. Saygin, D. & Patel, M.K. & Worrell, E. & Tam, C. & Gielen, D.J., 2011. "Potential of best practice technology to improve energy efficiency in the global chemical and petrochemical sector," Energy, Elsevier, vol. 36(9), pages 5779-5790.
    10. Li, Huiquan & Bao, Weijun & Xiu, Caihong & Zhang, Yi & Xu, Hongbin, 2010. "Energy conservation and circular economy in China's process industries," Energy, Elsevier, vol. 35(11), pages 4273-4281.
    11. Hong, Gui-Bing & Ma, Chih-Ming & Chen, Hua-Wei & Chuang, Kai-Jen & Chang, Chang-Tang & Su, Te-Li, 2011. "Energy flow analysis in pulp and paper industry," Energy, Elsevier, vol. 36(5), pages 3063-3068.
    12. Rafiqul, Islam & Weber, Christoph & Lehmann, Bianca & Voss, Alfred, 2005. "Energy efficiency improvements in ammonia production—perspectives and uncertainties," Energy, Elsevier, vol. 30(13), pages 2487-2504.
    13. Zhou, Wenji & Zhu, Bing & Li, Qiang & Ma, Tieju & Hu, Shanying & Griffy-Brown, Charla, 2010. "CO2 emissions and mitigation potential in China's ammonia industry," Energy Policy, Elsevier, vol. 38(7), pages 3701-3709, July.
    14. Wang, Zhifang & Zheng, Danxing & Jin, Hongguang, 2009. "Energy integration of acetylene and power polygeneration by flowrate-exergy diagram," Applied Energy, Elsevier, vol. 86(3), pages 372-379, March.
    15. Gunter Festel & Udo Oels & Andreas Kreimeyer & Max Zedtwitz (ed.), 2005. "The Chemical and Pharmaceutical Industry in China," Springer Books, Springer, number 978-3-540-26561-0, September.
    16. Jason H J Wang & Henry Wai-Chung Yeung, 2000. "Strategies for Global Competition: Transnational Chemical Firms and Singapore's Chemical Cluster," Environment and Planning A, , vol. 32(5), pages 847-869, May.
    17. Fleiter, Tobias & Fehrenbach, Daniel & Worrell, Ernst & Eichhammer, Wolfgang, 2012. "Energy efficiency in the German pulp and paper industry – A model-based assessment of saving potentials," Energy, Elsevier, vol. 40(1), pages 84-99.
    18. Saygin, D. & Worrell, E. & Patel, M.K. & Gielen, D.J., 2011. "Benchmarking the energy use of energy-intensive industries in industrialized and in developing countries," Energy, Elsevier, vol. 36(11), pages 6661-6673.
    19. Xie, Kechang & Li, Wenying & Zhao, Wei, 2010. "Coal chemical industry and its sustainable development in China," Energy, Elsevier, vol. 35(11), pages 4349-4355.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gómez, Antonio & Dopazo, César & Fueyo, Norberto, 2014. "The causes of the high energy intensity of the Kazakh economy: A characterization of its energy system," Energy, Elsevier, vol. 71(C), pages 556-568.
    2. Wang, Hongsheng & Lei, Yue & Wang, Haikun & Liu, Miaomiao & Yang, Jie & Bi, Jun, 2013. "Carbon reduction potentials of China's industrial parks: A case study of Suzhou Industry Park," Energy, Elsevier, vol. 55(C), pages 668-675.
    3. Changsheng Li & Lei Zhu & Tobias Fleiter, 2014. "Energy Efficiency Potentials in the Chlor-Alkali Sector — A Case Study of Shandong Province in China," Energy & Environment, , vol. 25(3-4), pages 661-686, April.
    4. Jiang, Xuemei & Zhu, Kunfu & Green, Christopher, 2015. "China's energy saving potential from the perspective of energy efficiency advantages of foreign-invested enterprises," Energy Economics, Elsevier, vol. 49(C), pages 104-112.
    5. Yizheng Lyu & Kun Yan & Jinping Tian & Lyujun Chen, 2023. "High cost of waste treatment calls for systematic rethinking: A case study for a chemical industrial park in China," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 362-375, February.
    6. Hao, Qiao & Tian, Jinping & Li, Xing & Chen, Lujun, 2017. "Using a hybrid of green chemistry and industrial ecology to make chemical production greener," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 106-113.
    7. Liu, Zhe & Adams, Michelle & Cote, Raymond P. & Geng, Yong & Ren, Jingzheng & Chen, Qinghua & Liu, Weili & Zhu, Xuesong, 2018. "Co-benefits accounting for the implementation of eco-industrial development strategies in the scale of industrial park based on emergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1522-1529.
    8. Knoop, Katharina & Lechtenböhmer, Stefan, 2017. "The potential for energy efficiency in the EU Member States – A comparison of studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1097-1105.
    9. Chin-Chi Cheng & Dasheng Lee & Ching Hung Wang & Shu Fen Lin & Hung-Peng Chang & Shang-Te Fang, 2015. "The Development of Cloud Energy Management," Energies, MDPI, vol. 8(5), pages 1-21, May.
    10. Teng, Sin Yong & Touš, Michal & Leong, Wei Dong & How, Bing Shen & Lam, Hon Loong & Máša, Vítězslav, 2021. "Recent advances on industrial data-driven energy savings: Digital twins and infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Haoran Zhao & Sen Guo & Huiru Zhao, 2018. "Comprehensive benefit evaluation of eco-industrial parks by employing the best-worst method based on circular economy and sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1229-1253, June.
    12. Yune, Jeremy H. & Tian, Jinping & Liu, Wei & Chen, Lujun & Descamps-Large, Cathy, 2016. "Greening Chinese chemical industrial park by implementing industrial ecology strategies: A case study," Resources, Conservation & Recycling, Elsevier, vol. 112(C), pages 54-64.
    13. Wang, Qian & Wang, Yanan & Chen, Wei & Zhou, Xue & Zhao, Minjuan & Zhang, Bangbang, 2020. "Do land price variation and environmental regulation improve chemical industrial agglomeration? A regional analysis in China," Land Use Policy, Elsevier, vol. 94(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yun-Hsun & Chang, Yi-Lin & Fleiter, Tobias, 2016. "A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry," Energy Policy, Elsevier, vol. 96(C), pages 14-26.
    2. Silva, Felipe L.C. & Souza, Reinaldo C. & Cyrino Oliveira, Fernando L. & Lourenco, Plutarcho M. & Calili, Rodrigo F., 2018. "A bottom-up methodology for long term electricity consumption forecasting of an industrial sector - Application to pulp and paper sector in Brazil," Energy, Elsevier, vol. 144(C), pages 1107-1118.
    3. Lin, Hsin-Chiu & Chan, David Yih-Liang & Lin, Wei-Chun & Hsu, Chung-Hsuan & Hong, Gui-Bing, 2014. "Status of energy conservation in Taiwan's pulp and paper industry," Energy, Elsevier, vol. 73(C), pages 680-685.
    4. Lu, Shyi-Min & Lu, Ching & Tseng, Kuo-Tung & Chen, Falin & Chen, Chen-Liang, 2013. "Energy-saving potential of the industrial sector of Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 674-683.
    5. Talaei, Alireza & Ahiduzzaman, Md. & Kumar, Amit, 2018. "Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation potentials in the chemical sector," Energy, Elsevier, vol. 153(C), pages 231-247.
    6. Liew, Peng Yen & Wan Alwi, Sharifah Rafidah & Ho, Wai Shin & Abdul Manan, Zainuddin & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2018. "Multi-period energy targeting for Total Site and Locally Integrated Energy Sectors with cascade Pinch Analysis," Energy, Elsevier, vol. 155(C), pages 370-380.
    7. da Silva, Felipe L.C. & Cyrino Oliveira, Fernando L. & Souza, Reinaldo C., 2019. "A bottom-up bayesian extension for long term electricity consumption forecasting," Energy, Elsevier, vol. 167(C), pages 198-210.
    8. Hong, Gui-Bing & Ma, Chih-Ming & Chen, Hua-Wei & Chuang, Kai-Jen & Chang, Chang-Tang & Su, Te-Li, 2011. "Energy flow analysis in pulp and paper industry," Energy, Elsevier, vol. 36(5), pages 3063-3068.
    9. Ke, Jing & Price, Lynn & McNeil, Michael & Khanna, Nina Zheng & Zhou, Nan, 2013. "Analysis and practices of energy benchmarking for industry from the perspective of systems engineering," Energy, Elsevier, vol. 54(C), pages 32-44.
    10. Valdes, Javier & Masip Macia, Yunesky & Dorner, Wolfgang & Ramirez Camargo, Luis, 2021. "Unsupervised grouping of industrial electricity demand profiles: Synthetic profiles for demand-side management applications," Energy, Elsevier, vol. 215(PA).
    11. Mingquan Wang & Lingyun Zhang & Xin Su & Yang Lei & Qun Shen & Wei Wei & Maohua Wang, 2019. "Assessing the technology impact for industry carbon density reduction in China based on C3IAM-Tice," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1455-1468, December.
    12. Feng, Xiao & Pu, Jing & Yang, Junkun & Chu, Khim Hoong, 2011. "Energy recovery in petrochemical complexes through heat integration retrofit analysis," Applied Energy, Elsevier, vol. 88(5), pages 1965-1982, May.
    13. Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2016. "On the efficiency, exergy costs and CO2 emission cost allocation for an integrated syngas and ammonia production plant," Energy, Elsevier, vol. 117(P2), pages 341-360.
    14. Utlu, Zafer & Kincay, Olcay, 2013. "An assessment of a pulp and paper mill through energy and exergy analyses," Energy, Elsevier, vol. 57(C), pages 565-573.
    15. Wang, Ning & Wen, Zongguo & Liu, Mingqi & Guo, Jie, 2016. "Constructing an energy efficiency benchmarking system for coal production," Applied Energy, Elsevier, vol. 169(C), pages 301-308.
    16. Verma, Om Prakash & Manik, Gaurav & Sethi, Sushant Kumar, 2019. "A comprehensive review of renewable energy source on energy optimization of black liquor in MSE using steady and dynamic state modeling, simulation and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 90-109.
    17. Liew, Peng Yen & Lim, Jeng Shiun & Wan Alwi, Sharifah Rafidah & Abdul Manan, Zainuddin & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2014. "A retrofit framework for Total Site heat recovery systems," Applied Energy, Elsevier, vol. 135(C), pages 778-790.
    18. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    19. Brueckner, Sarah & Miró, Laia & Cabeza, Luisa F. & Pehnt, Martin & Laevemann, Eberhard, 2014. "Methods to estimate the industrial waste heat potential of regions – A categorization and literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 164-171.
    20. Jamaluddin, Khairulnadzmi & Wan Alwi, Sharifah Rafidah & Abd Manan, Zainuddin & Hamzah, Khaidzir & Klemeš, Jiří Jaromír, 2022. "Design of Total Site-Integrated TrigenerationSystem using trigeneration cascade analysis considering transmission losses and sensitivity analysis," Energy, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:46:y:2012:i:1:p:459-470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.