IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v156y2021ics0301421521003128.html
   My bibliography  Save this article

Industrial agglomeration effect for energy efficiency in Japanese production plants

Author

Listed:
  • Tanaka, Kenta
  • Managi, Shunsuke

Abstract

Improving energy efficiency is a highly effective policy for protecting the environment and preserving resources. Previous studies have measured energy efficiency in the industrial sector. We further contribute to understanding the factors that affect energy efficiency changes. This study measures energy efficiency based on plant-level data in Japan's paper/pulp and cement industries as representative energy intensive sectors. We analyze the relationship between the industrial agglomeration effect and the energy efficiency of each studied industry. Our results reflect several important findings. First, energy efficiency has improved in the paper and pulp industry as well as the cement industry between 2000 and 2010. However, the factors for improving energy efficiency differ between the industries. Second, industrial agglomeration affects energy efficiency. In the paper and pulp industry, the same industry agglomerations contribute to improvements in energy efficiency. However, the agglomeration effect is negative for energy efficiency in the cement industry. Our results indicate that one must consider regional circumstances more carefully when seeking to improve energy efficiency.

Suggested Citation

  • Tanaka, Kenta & Managi, Shunsuke, 2021. "Industrial agglomeration effect for energy efficiency in Japanese production plants," Energy Policy, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:enepol:v:156:y:2021:i:c:s0301421521003128
    DOI: 10.1016/j.enpol.2021.112442
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421521003128
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112442?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Tzu-Pu & Hu, Jin-Li, 2010. "Total-factor energy productivity growth, technical progress, and efficiency change: An empirical study of China," Applied Energy, Elsevier, vol. 87(10), pages 3262-3270, October.
    2. Li, Ming-Jia & Tao, Wen-Quan, 2017. "Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry," Applied Energy, Elsevier, vol. 187(C), pages 203-215.
    3. Kenta Tanaka and Shunsuke Managi, 2013. "Measuring Productivity Gains from Deregulation of the Japanese Urban Gas Industry," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    4. Doojav, Gan-Ochir & Kalirajan, Kaliappa, 2020. "Sources of energy productivity change in Australian sub-industries," Economic Analysis and Policy, Elsevier, vol. 65(C), pages 1-10.
    5. Vlontzos, George & Niavis, Spyros & Manos, Basil, 2014. "A DEA approach for estimating the agricultural energy and environmental efficiency of EU countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 91-96.
    6. Cole, Matthew A. & Elliott, Robert J.R. & Okubo, Toshihiro & Zhou, Ying, 2013. "The carbon dioxide emissions of firms: A spatial analysis," Journal of Environmental Economics and Management, Elsevier, vol. 65(2), pages 290-309.
    7. Behrens, Kristian & Robert-Nicoud, Frédéric, 2015. "Agglomeration Theory with Heterogeneous Agents," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 171-245, Elsevier.
    8. Chenxi Li & Kening Wu & Xiangyu Gao, 2020. "Manufacturing industry agglomeration and spatial clustering: Evidence from Hebei Province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 2941-2965, April.
    9. Liao, Nuo & He, Yong, 2018. "Exploring the effects of influencing factors on energy efficiency in industrial sector using cluster analysis and panel regression model," Energy, Elsevier, vol. 158(C), pages 782-795.
    10. Boyd, Gale A. & Pang, Joseph X., 2000. "Estimating the linkage between energy efficiency and productivity," Energy Policy, Elsevier, vol. 28(5), pages 289-296, May.
    11. Randall W. Eberts & Daniel P. McMillen, 1999. "Agglomeration Economies and Urban Public Infrastructure," Book chapters authored by Upjohn Institute researchers, in: Paul Cheshire & Edwin S. Mills (ed.),handbook or Regional and Urban Economics, volume 3, pages 1455-1495, W.E. Upjohn Institute for Employment Research.
    12. Calem, Paul S. & Carlino, Gerald A., 1991. "Urban agglomeration economies in the presence of technical change," Journal of Urban Economics, Elsevier, vol. 29(1), pages 82-95, January.
    13. Martin Andersson & Hans Lööf, 2011. "Agglomeration and productivity: evidence from firm-level data," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 46(3), pages 601-620, June.
    14. Mukherjee, Kankana, 2008. "Energy use efficiency in U.S. manufacturing: A nonparametric analysis," Energy Economics, Elsevier, vol. 30(1), pages 76-96, January.
    15. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    16. Dong, Liang & Gu, Fumei & Fujita, Tsuyoshi & Hayashi, Yoshitsugu & Gao, Jie, 2014. "Uncovering opportunity of low-carbon city promotion with industrial system innovation: Case study on industrial symbiosis projects in China," Energy Policy, Elsevier, vol. 65(C), pages 388-397.
    17. Fare, Rolf & Shawna Grosskopf & Mary Norris & Zhongyang Zhang, 1994. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries," American Economic Review, American Economic Association, vol. 84(1), pages 66-83, March.
    18. Holtz-Eakin, Douglas, 1993. "State-specific estimates of state and local government capital," Regional Science and Urban Economics, Elsevier, vol. 23(2), pages 185-209, April.
    19. Wagner, Alfred, 1891. "Marshall's Principles of Economics," History of Economic Thought Articles, McMaster University Archive for the History of Economic Thought, vol. 5, pages 319-338.
    20. Marian Chertow & Weslynne Ashton & Juan Espinosa, 2008. "Industrial Symbiosis in Puerto Rico: Environmentally Related Agglomeration Economies," Regional Studies, Taylor & Francis Journals, vol. 42(10), pages 1299-1312.
    21. Mukherjee, Kankana, 2008. "Energy use efficiency in the Indian manufacturing sector: An interstate analysis," Energy Policy, Elsevier, vol. 36(2), pages 662-672, February.
    22. Chambers, Robert G. & Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity Growth in APEC Countries," Working Papers 197843, University of Maryland, Department of Agricultural and Resource Economics.
    23. Blomberg, Jerry & Henriksson, Eva & Lundmark, Robert, 2012. "Energy efficiency and policy in Swedish pulp and paper mills: A data envelopment analysis approach," Energy Policy, Elsevier, vol. 42(C), pages 569-579.
    24. Morikawa, Masayuki, 2012. "Population density and efficiency in energy consumption: An empirical analysis of service establishments," Energy Economics, Elsevier, vol. 34(5), pages 1617-1622.
    25. Nakano, Makiko & Managi, Shunsuke, 2008. "Regulatory reforms and productivity: An empirical analysis of the Japanese electricity industry," Energy Policy, Elsevier, vol. 36(1), pages 201-209, January.
    26. John A. Tatom, 1991. "Should government spending on capital goods be raised?," Review, Federal Reserve Bank of St. Louis, issue Mar, pages 3-15.
    27. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    28. Guan Zhengfei & Alfons Oude Lansink, 2006. "The Source of Productivity Growth in Dutch Agriculture: A Perspective from Finance," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(3), pages 644-656.
    29. Kumar, Surender & Managi, Shunsuke, 2009. "Energy price-induced and exogenous technological change: Assessing the economic and environmental outcomes," Resource and Energy Economics, Elsevier, vol. 31(4), pages 334-353, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jebali, Eya & Essid, Hédi & Khraief, Naceur, 2017. "The analysis of energy efficiency of the Mediterranean countries: A two-stage double bootstrap DEA approach," Energy, Elsevier, vol. 134(C), pages 991-1000.
    2. Bhat, Javed Ahmad & Haider, Salman & Kamaiah, Bandi, 2018. "Interstate energy efficiency of Indian paper industry: A slack-based non-parametric approach," Energy, Elsevier, vol. 161(C), pages 284-298.
    3. Apergis, Nicholas & Aye, Goodness C. & Barros, Carlos Pestana & Gupta, Rangan & Wanke, Peter, 2015. "Energy efficiency of selected OECD countries: A slacks based model with undesirable outputs," Energy Economics, Elsevier, vol. 51(C), pages 45-53.
    4. Managi, Shunsuke & Hibiki, Akira & Shimane, Tetsuya, 2014. "Efficiency or technology adoption: A case study in waste-treatment technology," Resource and Energy Economics, Elsevier, vol. 36(2), pages 586-600.
    5. Cui, Qiang & Kuang, Hai-bo & Wu, Chun-you & Li, Ye, 2014. "The changing trend and influencing factors of energy efficiency: The case of nine countries," Energy, Elsevier, vol. 64(C), pages 1026-1034.
    6. Lin, Boqiang & Sai, Rockson, 2022. "Has mining agglomeration affected energy productivity in Africa?," Energy, Elsevier, vol. 244(PA).
    7. Lan-Bing Li & Cong-Cong Zhang & Jin-Li Hu & Ching-Ren Chiu, 2021. "Disaggregate productivity growth sources of regional industries in China," Empirical Economics, Springer, vol. 60(3), pages 1531-1557, March.
    8. Demiral, Elif E. & Sağlam, Ümit, 2021. "Eco-efficiency and Eco-productivity assessments of the states in the United States: A two-stage Non-parametric analysis," Applied Energy, Elsevier, vol. 303(C).
    9. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    10. Tajudeen, Ibrahim A., 2021. "The underlying drivers of economy-wide energy efficiency and asymmetric energy price responses," Energy Economics, Elsevier, vol. 98(C).
    11. Zhang, Shanshan & Lundgren, Tommy & Zhou, Wenchao, 2016. "Energy efficiency in Swedish industry," Energy Economics, Elsevier, vol. 55(C), pages 42-51.
    12. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    13. Cui, Qiang & Li, Ye, 2015. "Evaluating energy efficiency for airlines: An application of VFB-DEA," Journal of Air Transport Management, Elsevier, vol. 44, pages 34-41.
    14. Cui, Qiang & Li, Ye, 2015. "An empirical study on the influencing factors of transportation carbon efficiency: Evidences from fifteen countries," Applied Energy, Elsevier, vol. 141(C), pages 209-217.
    15. Bansal, Pooja & Kumar, Sunil & Mehra, Aparna & Gulati, Rachita, 2022. "Developing two dynamic Malmquist-Luenberger productivity indices: An illustrated application for assessing productivity performance of Indian banks," Omega, Elsevier, vol. 107(C).
    16. Managi, Shunsuke & Jena, Pradyot Ranjan, 2008. "Environmental productivity and Kuznets curve in India," Ecological Economics, Elsevier, vol. 65(2), pages 432-440, April.
    17. Hang, Ye & Sun, Jiasen & Wang, Qunwei & Zhao, Zengyao & Wang, Yizhong, 2015. "Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities," Economic Modelling, Elsevier, vol. 49(C), pages 46-52.
    18. Emrouznejad, Ali & Yang, Guo-liang, 2016. "A framework for measuring global Malmquist–Luenberger productivity index with CO2 emissions on Chinese manufacturing industries," Energy, Elsevier, vol. 115(P1), pages 840-856.
    19. Wu, F. & Fan, L.W. & Zhou, P. & Zhou, D.Q., 2012. "Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis," Energy Policy, Elsevier, vol. 49(C), pages 164-172.
    20. Nuri Ozgur DOGAN & Can Tansel TUGCU, 2015. "Energy Efficiency in Electricity Production: A Data Envelopment Analysis (DEA) Approach for the G-20 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 246-252.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:156:y:2021:i:c:s0301421521003128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.