IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v183y2019icp142-148.html
   My bibliography  Save this article

The use of energy in milk production; a case study from Konya province of Turkey

Author

Listed:
  • Oğuz, Cennet
  • Yener, Aysun

Abstract

The aim of this study is to examine the energy efficiencies of dairy products produced in dairy enterprises in Konya region and to provide suggestions to increase energy efficiency. For this purpose, 125 dairy enterprises have been selected as samples by using stratified random sampling method to identify the enterprises to be examined. As a result, 8.05% of total energy input per cow was direct energy and 91.95% was indirect energy. 89.66% of total energy output is from milk production, 4.65% is from productive stock value (PSV) and 5.69% is cow manure. The energy use efficiency in the research area was found to be 1.07. Energy productivity in milk production has been calculated as 0.13 (kgMJ−1) when milk production per unit animal was taken into consideration. The specific energy value per dairy cow has been calculated as 7.42 MJ/kg. A non-parametric production function of DEA (Data Envelopment Analysis) has been applied to optimize energy use in dairy enterprises. The average technical efficiency (TE) in the research area has been calculated as 0.921. In this sense, the amount of input needs to be reduced by 7.9% in order to achieve the same level of production.

Suggested Citation

  • Oğuz, Cennet & Yener, Aysun, 2019. "The use of energy in milk production; a case study from Konya province of Turkey," Energy, Elsevier, vol. 183(C), pages 142-148.
  • Handle: RePEc:eee:energy:v:183:y:2019:i:c:p:142-148
    DOI: 10.1016/j.energy.2019.06.133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219312654
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.06.133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kraatz, Simone, 2012. "Energy intensity in livestock operations – Modeling of dairy farming systems in Germany," Agricultural Systems, Elsevier, vol. 110(C), pages 90-106.
    2. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    3. Saini, A.S. & Sharma, K.D. & Pant, K.P. & Thakur, D.R., 1998. "Energy Management for Sustainability of Hill Agriculture: A Case of Himachal Pradesh," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 53(3), September.
    4. Hosseinzadeh-Bandbafha, Homa & Safarzadeh, Dariush & Ahmadi, Ebrahim & Nabavi-Pelesaraei, Ashkan & Hosseinzadeh-Bandbafha, Ehssan, 2017. "Applying data envelopment analysis to evaluation of energy efficiency and decreasing of greenhouse gas emissions of fattening farms," Energy, Elsevier, vol. 120(C), pages 652-662.
    5. Mukherjee, Kankana, 2008. "Energy use efficiency in the Indian manufacturing sector: An interstate analysis," Energy Policy, Elsevier, vol. 36(2), pages 662-672, February.
    6. Pishgar Komleh, S.H. & Keyhani, A. & Rafiee, Sh. & Sefeedpary, P., 2011. "Energy use and economic analysis of corn silage production under three cultivated area levels in Tehran province of Iran," Energy, Elsevier, vol. 36(5), pages 3335-3341.
    7. Tim Coelli & Sanzidur Rahman & Colin Thirtle, 2002. "Technical, Allocative, Cost and Scale Efficiencies in Bangladesh Rice Cultivation: A Non‐parametric Approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 53(3), pages 607-626, November.
    8. Unakıtan, Gökhan & Kumbar, Nihal, 2019. "Analysis of feed conversion efficiency in dairy cattle farms in Thrace Region, Turkey," Energy, Elsevier, vol. 176(C), pages 589-595.
    9. Refsgaard, Karen & Halberg, Niels & Kristensen, Erik Steen, 1998. "Energy utilization in crop and dairy production in organic and conventional livestock production systems," Agricultural Systems, Elsevier, vol. 57(4), pages 599-630, August.
    10. Esengun, Kemal & Erdal, Gülistan & Gündüz, Orhan & Erdal, Hilmi, 2007. "An economic analysis and energy use in stake-tomato production in Tokat province of Turkey," Renewable Energy, Elsevier, vol. 32(11), pages 1873-1881.
    11. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yeşim Aytop, 2023. "Determination of Energy Consumption and Technical Efficiency of Cotton Farms in Türkiye," Sustainability, MDPI, vol. 15(14), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammadi, Ali & Rafiee, Shahin & Mohtasebi, Seyed Saeid & Mousavi Avval, Seyed Hashem & Rafiee, Hamed, 2011. "Energy efficiency improvement and input cost saving in kiwifruit production using Data Envelopment Analysis approach," Renewable Energy, Elsevier, vol. 36(9), pages 2573-2579.
    2. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2019. "Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India," Energy, Elsevier, vol. 174(C), pages 269-279.
    3. Amar Oukil & Slim Zekri, 2021. "Investigating farming efficiency through a two stage analytical approach: Application to the agricultural sector in Northern Oman," Papers 2104.10943, arXiv.org.
    4. Kristof De Witte & Rui Marques, 2010. "Designing performance incentives, an international benchmark study in the water sector," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 18(2), pages 189-220, June.
    5. Ismat Ara Begum & Mohammad Jahangir Alam & Jeroen Buysse & Aymen Frija & Guido Van Huylenbroeck, 2012. "Contract farmer and poultry farm efficiency in Bangladesh: a data envelopment analysis," Applied Economics, Taylor & Francis Journals, vol. 44(28), pages 3737-3747, October.
    6. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    7. Blend Frangu & Jennie Sheerin Popp & Michael Thomsen & Arben Musliu, 2018. "Evaluating Greenhouse Tomato and Pepper Input Efficiency Use in Kosovo," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    8. Pritpal Singh & Gurdeep Singh & G. P. S. Sodhi, 2022. "Data envelopment analysis based optimization for improving net ecosystem carbon and energy budget in cotton (Gossypium hirsutum L.) cultivation: methods and a case study of north-western India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2079-2119, February.
    9. Blomberg, Jerry & Henriksson, Eva & Lundmark, Robert, 2012. "Energy efficiency and policy in Swedish pulp and paper mills: A data envelopment analysis approach," Energy Policy, Elsevier, vol. 42(C), pages 569-579.
    10. Li, Hong Xian & Li, Yan & Jiang, Boya & Zhang, Limao & Wu, Xianguo & Lin, Jingyi, 2020. "Energy performance optimisation of building envelope retrofit through integrated orthogonal arrays with data envelopment analysis," Renewable Energy, Elsevier, vol. 149(C), pages 1414-1423.
    11. Mandal, Sabuj Kumar, 2010. "Do undesirable output and environmental regulation matter in energy efficiency analysis? Evidence from Indian Cement Industry," Energy Policy, Elsevier, vol. 38(10), pages 6076-6083, October.
    12. Simar, Léopold & Wilson, Paul W., 2020. "Technical, allocative and overall efficiency: Estimation and inference," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1164-1176.
    13. Alboghdady, Mohamed Altabei, 2014. "Nonparametric Model For Measuring Impact Of Inputs Density On Egyptian Tomato Production Efficiency," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 2(4), pages 1-10, October.
    14. Hande ERDOGAN AKTAN & Pinar KAYA SAMUT, 2013. "Analysis of the Ef f iciency Determinants of Turkey’s Agriculture Sector by Two-Stage Data Envelopment Analysis (DEA)," Ege Academic Review, Ege University Faculty of Economics and Administrative Sciences, vol. 13(1), pages 21-28.
    15. Banaeian, Narges & Zangeneh, Morteza, 2011. "Study on energy efficiency in corn production of Iran," Energy, Elsevier, vol. 36(8), pages 5394-5402.
    16. Sabuj Kumar Mandal & S Madheswaran, 2009. "Energy Use Efficiency in Indian Cement Industry: Application of Data Envelopment Analysis and Directional Distance Function," Working Papers 230, Institute for Social and Economic Change, Bangalore.
    17. Singh, Pritpal & Singh, Gurdeep & Gupta, Alok & Sodhi, Gurjinder Pal Singh, 2023. "Data envelopment analysis based energy optimization for improving energy efficiency in wheat established following rice residue management in rice-wheat cropping system," Energy, Elsevier, vol. 284(C).
    18. Kaab, Ali & Sharifi, Mohammad & Mobli, Hossein & Nabavi-Pelesaraei, Ashkan & Chau, Kwok-wing, 2019. "Use of optimization techniques for energy use efficiency and environmental life cycle assessment modification in sugarcane production," Energy, Elsevier, vol. 181(C), pages 1298-1320.
    19. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S. & Sharma, Sandeep, 2021. "Energy optimization in wheat establishment following rice residue management with Happy Seeder technology for reduced carbon footprints in north-western India," Energy, Elsevier, vol. 230(C).
    20. Abdul Wadud, 2013. "Impact of Microcredit on Agricultural Farm Performance and Food Security in Bangladesh," Working Papers 14, Institute of Microfinance (InM).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:183:y:2019:i:c:p:142-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.