IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v30y2002i2p107-116.html
   My bibliography  Save this item

Using conjoint analysis to quantify public preferences over the environmental impacts of wind farms. An example from Spain

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Simona Bigerna & Paolo Polinori, 2015. "Assessing the Determinants of Renewable Electricity Acceptance Integrating Meta-Analysis Regression and a Local Comprehensive Survey," Sustainability, MDPI, vol. 7(9), pages 1-24, August.
  2. Abdullah, Sabah & Mariel, Petr, 2010. "Choice experiment study on the willingness to pay to improve electricity services," Energy Policy, Elsevier, vol. 38(8), pages 4570-4581, August.
  3. Joséphine Süptitz & Christian Schlereth, 2017. "Fracking: Messung der gesellschaftlichen Akzeptanz und der Wirkung akzeptanzsteigernder Maßnahmen [Fracking: Measuring Social Acceptance and the Effect of Acceptance Increasing Measures]," Schmalenbach Journal of Business Research, Springer, vol. 69(4), pages 405-439, November.
  4. Koundouri, Phoebe & Kountouris, Yiannis & Remoundou, Kyriaki, 2009. "Valuing a wind farm construction: A contingent valuation study in Greece," Energy Policy, Elsevier, vol. 37(5), pages 1939-1944, May.
  5. Calero, R. & Carta, J. A., 2004. "Action plan for wind energy development in the Canary Islands," Energy Policy, Elsevier, vol. 32(10), pages 1185-1197, July.
  6. Li-Chun Peng & Wan-Yu Lien & Yu-Pin Lin, 2020. "How Experts’ Opinions and Knowledge Affect Their Willingness to Pay for and Ranking of Hydrological Ecosystem Services," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
  7. Landry, Craig E. & Allen, Tom & Cherry, Todd & Whitehead, John C., 2012. "Wind turbines and coastal recreation demand," Resource and Energy Economics, Elsevier, vol. 34(1), pages 93-111.
  8. Mueller, Milton L. & Park, Yuri & Lee, Jongsu & Kim, Tai-Yoo, 2006. "Digital identity: How users value the attributes of online identifiers," Information Economics and Policy, Elsevier, vol. 18(4), pages 405-422, November.
  9. Peterson, Mark & Feldman, David, 2018. "Citizen preferences for possible energy policies at the national and state levels," Energy Policy, Elsevier, vol. 121(C), pages 80-91.
  10. Kim, Ju-Hee & Yoo, Seung-Hoon, 2020. "Public perspective on the environmental impacts of sea sand mining: Evidence from a choice experiment in South Korea," Resources Policy, Elsevier, vol. 69(C).
  11. Dimitropoulos, Alexandros & Kontoleon, Andreas, 2009. "Assessing the determinants of local acceptability of wind-farm investment: A choice experiment in the Greek Aegean Islands," Energy Policy, Elsevier, vol. 37(5), pages 1842-1854, May.
  12. Elisabetta Strazzera & Elisabetta Cherchi & Silvia Ferrini, 2010. "Assessment of Regeneration Projects in Urban Areas of Environmental Interest: A Stated Choice Approach to Estimate Use and Quasi-Option Values," Environment and Planning A, , vol. 42(2), pages 452-468, February.
  13. Andrew D. Krueger & George R. Parsons & Jeremy Firestone, 2011. "Valuing the Visual Disamenity of Offshore Wind Projects at Varying Distances from the Shore: An Application on the Delaware Shoreline," Working Papers 11-04, University of Delaware, Department of Economics.
  14. Maria De Salvo & Sandra Notaro & Giuseppe Cucuzza & Laura Giuffrida & Giovanni Signorello, 2021. "Protecting the Local Landscape or Reducing Greenhouse Gas Emissions? A Study on Social Acceptance and Preferences towards the Installation of a Wind Farm," Sustainability, MDPI, vol. 13(22), pages 1-19, November.
  15. Gracia, Azucena & Barreiro-Hurlé, Jesús & Pérez y Pérez, Luis, 2012. "Can renewable energy be financed with higher electricity prices? Evidence from a Spanish region," Energy Policy, Elsevier, vol. 50(C), pages 784-794.
  16. Philippe Bance & Angélique Chassy, 2020. "Citizen Advisory Committees in the Contingent Valuation Method Process," Post-Print hal-02910722, HAL.
  17. Strazzera, Elisabetta & Mura, Marina & Contu, Davide, 2012. "Combining choice experiments with psychometric scales to assess the social acceptability of wind energy projects: A latent class approach," Energy Policy, Elsevier, vol. 48(C), pages 334-347.
  18. Mirasgedis, S. & Tourkolias, C. & Tzovla, E. & Diakoulaki, D., 2014. "Valuing the visual impact of wind farms: An application in South Evia, Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 296-311.
  19. Söderberg, Magnus, 2008. "A choice modelling analysis on the similarity between distribution utilities' and industrial customers' price and quality preferences," Energy Economics, Elsevier, vol. 30(3), pages 1246-1262, May.
  20. de Lange, Willem J. & Kleynhans, Theo E., 2007. "Towards more inclusive long-term bulk water resource management," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 46(3), pages 1-27, September.
  21. Zaunbrecher, Barbara S. & Linzenich, Anika & Ziefle, Martina, 2017. "A mast is a mast is a mast…? Comparison of preferences for location-scenarios of electricity pylons and wind power plants using conjoint analysis," Energy Policy, Elsevier, vol. 105(C), pages 429-439.
  22. Friebe, Christian A. & von Flotow, Paschen & Täube, Florian A., 2014. "Exploring technology diffusion in emerging markets – the role of public policy for wind energy," Energy Policy, Elsevier, vol. 70(C), pages 217-226.
  23. Anders Dugstad & Kristine M. Grimsrud & Gorm Kipperberg & Henrik Lindhjem & Ståle Navrud, 2021. "Scope Elasticity of Willingness to pay in Discrete Choice Experiments," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(1), pages 21-57, September.
  24. Bishop, Ian D. & Miller, David R., 2007. "Visual assessment of off-shore wind turbines: The influence of distance, contrast, movement and social variables," Renewable Energy, Elsevier, vol. 32(5), pages 814-831.
  25. Dachary-Bernard, Jeanne, 2007. "La méthode des choix multi-attributs appliquée aux Monts d’Arrée," Cahiers d'Economie et de Sociologie Rurales (CESR), Institut National de la Recherche Agronomique (INRA), vol. 84.
  26. Andrew D. Krueger & George R. Parsons & Jeremy Firestone, 2011. "Valuing the Visual Disamenity of Offshore Wind Power Projects at Varying Distances from the Shore: An Application on the Delaware Shoreline," Land Economics, University of Wisconsin Press, vol. 87(2), pages 268-283.
  27. Consolación Quintana-Rojo & Fernando-Evaristo Callejas-Albiñana & Miguel-Ángel Tarancón & Isabel Martínez-Rodríguez, 2020. "Econometric Studies on the Development of Renewable Energy Sources to Support the European Union 2020–2030 Climate and Energy Framework: A Critical Appraisal," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
  28. Anabela Botelho & Lígia Costa Pinto & Patricia Sousa, 2013. "Valuing wind farms’ environmental impacts by geographical distance: A contingent valuation study in Portugal," NIMA Working Papers 52, Núcleo de Investigação em Microeconomia Aplicada (NIMA), Universidade do Minho.
  29. le Maitre, Julia & Ryan, Geraldine & Power, Bernadette & O'Connor, Ellen, 2023. "Empowering onshore wind energy: A national choice experiment on financial benefits and citizen participation," Energy Policy, Elsevier, vol. 173(C).
  30. Menegaki, Angeliki, 2008. "Valuation for renewable energy: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2422-2437, December.
  31. Ladenburg, Jacob & Dubgaard, Alex, 2007. "Willingness to pay for reduced visual disamenities from offshore wind farms in Denmark," Energy Policy, Elsevier, vol. 35(8), pages 4059-4071, August.
  32. van Rensburg, Thomas M. & Kelley, Hugh & Jeserich, Nadine, 2015. "What influences the probability of wind farm planning approval: Evidence from Ireland," Ecological Economics, Elsevier, vol. 111(C), pages 12-22.
  33. Campbell, Robert & Venn, Tyron & Anderson, Nathaniel, 2015. "Quantifying Social Preferences toward Woody Biomass Energy Generation in Montana, USA," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205678, Agricultural and Applied Economics Association.
  34. Ek, Kristina & Persson, Lars, 2014. "Wind farms — Where and how to place them? A choice experiment approach to measure consumer preferences for characteristics of wind farm establishments in Sweden," Ecological Economics, Elsevier, vol. 105(C), pages 193-203.
  35. Xie, Bai-Chen & Zhao, Wei, 2018. "Willingness to pay for green electricity in Tianjin, China: Based on the contingent valuation method," Energy Policy, Elsevier, vol. 114(C), pages 98-107.
  36. Peter Strachan & David Lal, 2004. "Wind Energy Policy, Planning and Management Practice in the UK: Hot Air or a Gathering Storm?," Regional Studies, Taylor & Francis Journals, vol. 38(5), pages 549-569.
  37. Drechsler, Martin & Ohl, Cornelia & Meyerhoff, Jürgen & Eichhorn, Marcus & Monsees, Jan, 2010. "A modelling approach for allocating land-use in space to maximise social welfare - exemplified on the problem of wind power generation," UFZ Discussion Papers 6/2010, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
  38. Kaldellis, J.K. & Apostolou, D. & Kapsali, M. & Kondili, E., 2016. "Environmental and social footprint of offshore wind energy. Comparison with onshore counterpart," Renewable Energy, Elsevier, vol. 92(C), pages 543-556.
  39. Jianling Wang & Chenying Wang & Yi Chen, 2023. "Promoting Residents’ Willingness to Recycle Electronic ICT Waste in China: An Empirical Study Using Conjoint Analysis," Sustainability, MDPI, vol. 15(16), pages 1-16, August.
  40. Mourato, Susana & Saynor, Bob & Hart, David, 2004. "Greening London's black cabs: a study of driver's preferences for fuel cell taxis," Energy Policy, Elsevier, vol. 32(5), pages 685-695, March.
  41. Adaman, Fikret & KaralI, Nihan & Kumbaroglu, Gürkan & Or, Ilhan & Özkaynak, Begüm & Zenginobuz, Ünal, 2011. "What determines urban households' willingness to pay for CO2 emission reductions in Turkey: A contingent valuation survey," Energy Policy, Elsevier, vol. 39(2), pages 689-698, February.
  42. Bergmann, Ariel & Hanley, Nick & Wright, Robert, 2006. "Valuing the attributes of renewable energy investments," Energy Policy, Elsevier, vol. 34(9), pages 1004-1014, June.
  43. Sabah Abdulla & P W Jeanty, 2009. "Demand for Electricity Connection in Rural Areas: The Case of Kenya," Department of Economics Working Papers 26/09, University of Bath, Department of Economics.
  44. Faccioli, Michela & Czajkowski, Mikołaj & Glenk, Klaus & Martin-Ortega, Julia, 2020. "Environmental attitudes and place identity as determinants of preferences for ecosystem services," Ecological Economics, Elsevier, vol. 174(C).
  45. Sagebiel, Julian & Müller, Jakob R. & Rommel, Jens, 2013. "Are Consumers Willing to Pay More for Electricity from Cooperatives? Results from an Online Choice Experiment in Germany," MPRA Paper 52385, University Library of Munich, Germany.
  46. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
  47. Drechsler, Martin & Meyerhoff, Jürgen & Ohl, Cornelia, 2012. "The effect of feed-in tariffs on the production cost and the landscape externalities of wind power generation in West Saxony, Germany," Energy Policy, Elsevier, vol. 48(C), pages 730-736.
  48. Komarek, Timothy M., 2010. "Essays on the Economics of Environmental Management and Green Reputation," Graduate Research Master's Degree Plan B Papers 98248, Michigan State University, Department of Agricultural, Food, and Resource Economics.
  49. Ekin Birol & Phoebe Koundouri & Yiannis Kountouris, 2008. "Applications of the Choice Experiment Method in Europe: A Review," DEOS Working Papers 0803, Athens University of Economics and Business.
  50. repec:eid:wpaper:26/09 is not listed on IDEAS
  51. Lauren Knapp & Jacob Ladenburg, 2015. "How Spatial Relationships Influence Economic Preferences for Wind Power—A Review," Energies, MDPI, vol. 8(6), pages 1-25, June.
  52. Langer, Katharina & Decker, Thomas & Roosen, Jutta & Menrad, Klaus, 2016. "A qualitative analysis to understand the acceptance of wind energy in Bavaria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 248-259.
  53. Soliño, Mario & Farizo, Begoña A. & Vázquez, María X. & Prada, Albino, 2012. "Generating electricity with forest biomass: Consistency and payment timeframe effects in choice experiments," Energy Policy, Elsevier, vol. 41(C), pages 798-806.
  54. Caporale, Diana & De Lucia, Caterina, 2015. "Social acceptance of on-shore wind energy in Apulia Region (Southern Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1378-1390.
  55. Joseph Cook, 2007. "Reliability Of Stated Preferences For Cholera And Typhoid Vaccines With Time To Think In Hue, Vietnam," EEPSEA Special and Technical Paper sp200701s1, Economy and Environment Program for Southeast Asia (EEPSEA), revised Jan 2007.
  56. Jeanne Dachary-Bernard, 2007. "La méthode des choix multi-attributs appliquée aux Monts d’Arrée," Cahiers d'Economie et Sociologie Rurales, INRA Department of Economics, vol. 84, pages 133-166.
  57. Longo, Alberto & Markandya, Anil & Petrucci, Marta, 2008. "The internalization of externalities in the production of electricity: Willingness to pay for the attributes of a policy for renewable energy," Ecological Economics, Elsevier, vol. 67(1), pages 140-152, August.
  58. Valentine, Scott Victor, 2010. "Canada's constitutional separation of (wind) power," Energy Policy, Elsevier, vol. 38(4), pages 1918-1930, April.
  59. Brennan, Noreen & van Rensburg, Thomas M., 2020. "Public preferences for wind farms involving electricity trade and citizen engagement in Ireland," Energy Policy, Elsevier, vol. 147(C).
  60. Caporale, Diana & Sangiorgio, Valentino & Amodio, Alessandro & De Lucia, Caterina, 2020. "Multi-criteria and focus group analysis for social acceptance of wind energy," Energy Policy, Elsevier, vol. 140(C).
  61. Zorić, Jelena & Hrovatin, Nevenka, 2012. "Household willingness to pay for green electricity in Slovenia," Energy Policy, Elsevier, vol. 47(C), pages 180-187.
  62. Moran, Dominic & Sherrington, Chris, 2007. "An economic assessment of windfarm power generation in Scotland including externalities," Energy Policy, Elsevier, vol. 35(5), pages 2811-2825, May.
  63. Yeonbae Kim & Jeong-Dong Lee & Daeyoung Koh, 2005. "Effects of consumer preferences on the convergence of mobile telecommunications devices," Applied Economics, Taylor & Francis Journals, vol. 37(7), pages 817-826.
  64. Boyle, Kevin J. & Boatwright, Jessica & Brahma, Sreeya & Xu, Weibin, 2019. "NIMBY, not, in siting community wind farms," Resource and Energy Economics, Elsevier, vol. 57(C), pages 85-100.
  65. Toke, David & Breukers, Sylvia & Wolsink, Maarten, 2008. "Wind power deployment outcomes: How can we account for the differences?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1129-1147, May.
  66. Brennan, Noreen & Van Rensburg, Thomas M, 2016. "Wind farm externalities and public preferences for community consultation in Ireland: A discrete choice experiments approach," Energy Policy, Elsevier, vol. 94(C), pages 355-365.
  67. Anders Dugstad & Kristine Grimsrud & Gorm Kipperberg & Henrik Lindhjem & Ståle Navrud, 2020. "Scope elasticity and economic significance in discrete choice experiments," Discussion Papers 942, Statistics Norway, Research Department.
  68. O'Garra, Tanya & Mourato, Susana & Pearson, Peter, 2008. "Investigating attitudes to hydrogen refuelling facilities and the social cost to local residents," Energy Policy, Elsevier, vol. 36(6), pages 2074-2085, June.
  69. Campbell, Robert M. & Venn, Tyron J. & Anderson, Nathaniel M., 2016. "Social preferences toward energy generation with woody biomass from public forests in Montana, USA," Forest Policy and Economics, Elsevier, vol. 73(C), pages 58-67.
  70. Jeanne Dachary-Bernard, 2007. "La méthode des choix multi-attributs appliquée aux Monts d’Arrée," Post-Print hal-01201152, HAL.
  71. Söderholm, Patrik & Ek, Kristina & Pettersson, Maria, 2007. "Wind power development in Sweden: Global policies and local obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 365-400, April.
  72. Shoyama, Kikuko & Yamagata, Yoshiki, 2016. "Local perception of ecosystem service bundles in the Kushiro watershed, Northern Japan – Application of a public participation GIS tool," Ecosystem Services, Elsevier, vol. 22(PA), pages 139-149.
  73. Mattmann, Matteo & Logar, Ivana & Brouwer, Roy, 2016. "Hydropower externalities: A meta-analysis," Energy Economics, Elsevier, vol. 57(C), pages 66-77.
  74. Langer, Katharina & Decker, Thomas & Menrad, Klaus, 2017. "Public participation in wind energy projects located in Germany: Which form of participation is the key to acceptance?," Renewable Energy, Elsevier, vol. 112(C), pages 63-73.
  75. De La Maza, Cristóbal & Davis, Alex & Azevedo, Inês, 2021. "Welfare analysis of the ecological impacts of electricity production in Chile using the sparse multinomial logit model," Ecological Economics, Elsevier, vol. 184(C).
  76. Ahn, Jiwoon & Jeong, Gicheol & Kim, Yeonbae, 2008. "A forecast of household ownership and use of alternative fuel vehicles: A multiple discrete-continuous choice approach," Energy Economics, Elsevier, vol. 30(5), pages 2091-2104, September.
  77. Komarek, Timothy M. & Lupi, Frank & Kaplowitz, Michael D., 2011. "Valuing energy policy attributes for environmental management: Choice experiment evidence from a research institution," Energy Policy, Elsevier, vol. 39(9), pages 5105-5115, September.
  78. Bergmann, Ariel & Colombo, Sergio & Hanley, Nick, 2008. "Rural versus urban preferences for renewable energy developments," Ecological Economics, Elsevier, vol. 65(3), pages 616-625, April.
  79. Meyerhoff, Jürgen & Ohl, Cornelia & Hartje, Volkmar, 2010. "Landscape externalities from onshore wind power," Energy Policy, Elsevier, vol. 38(1), pages 82-92, January.
  80. Iglesias, Guillermo & del Río, Pablo & Dopico, Jesús Ángel, 2011. "Policy analysis of authorisation procedures for wind energy deployment in Spain," Energy Policy, Elsevier, vol. 39(7), pages 4067-4076, July.
  81. Bigerna, Simona & Polinori, Paolo, 2011. "Italian consumers’ willingness to pay for renewable energy sources," MPRA Paper 34408, University Library of Munich, Germany.
  82. Bengart, Paul & Vogt, Bodo, 2021. "Fuel mix disclosure in Germany—The effect of more transparent information on consumer preferences for renewable energy," Energy Policy, Elsevier, vol. 150(C).
  83. Bao, Qifang & Honda, Tomonori & El Ferik, Sami & Shaukat, Mian Mobeen & Yang, Maria C., 2017. "Understanding the role of visual appeal in consumer preference for residential solar panels," Renewable Energy, Elsevier, vol. 113(C), pages 1569-1579.
  84. Morey, Edward & Thiene, Mara & De Salvo, Maria & Signorello, Giovanni, 2008. "Using attitudinal data to identify latent classes that vary in their preference for landscape preservation," Ecological Economics, Elsevier, vol. 68(1-2), pages 536-546, December.
  85. Tabassum-Abbasi, & Premalatha, M. & Abbasi, Tasneem & Abbasi, S.A., 2014. "Wind energy: Increasing deployment, rising environmental concerns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 270-288.
  86. Yamaguchi, Rintaro & Managi, Shunsuke, 2019. "Backward- and Forward-looking Shadow Prices in Inclusive Wealth Accounting: An Example of Renewable Energy Capital," Ecological Economics, Elsevier, vol. 156(C), pages 337-349.
  87. Katsaprakakis, Dimitris Al., 2012. "A review of the environmental and human impacts from wind parks. A case study for the Prefecture of Lasithi, Crete," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2850-2863.
  88. Molnarova, Kristina & Sklenicka, Petr & Stiborek, Jiri & Svobodova, Kamila & Salek, Miroslav & Brabec, Elizabeth, 2012. "Visual preferences for wind turbines: Location, numbers and respondent characteristics," Applied Energy, Elsevier, vol. 92(C), pages 269-278.
  89. Schmitz, Kim & Schmitz, P. Michael & Wronka, Tobias C., 2003. "Bewertung von Landschaftsfunktionen mit Choice Experiments," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 52(08), pages 1-11.
  90. Lee, Jongsu & Kim, Yeonbae & Lee, Jeong-Dong & Park, Yuri, 2006. "Estimating the extent of potential competition in the Korean mobile telecommunications market: Switching costs and number portability," International Journal of Industrial Organization, Elsevier, vol. 24(1), pages 107-124, January.
  91. Mattmann, Matteo & Logar, Ivana & Brouwer, Roy, 2016. "Wind power externalities: A meta-analysis," Ecological Economics, Elsevier, vol. 127(C), pages 23-36.
  92. Menegaki, Angeliki N., 2012. "A social marketing mix for renewable energy in Europe based on consumer stated preference surveys," Renewable Energy, Elsevier, vol. 39(1), pages 30-39.
  93. Bakti Hasan-Basri & Mohd Zaini Abd Karim & Normizan Bakar, 2015. "Willingness To Pay For Recreational Attributes Of Public Parks: A Choice Experiment Approach," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 60(05), pages 1-18, December.
  94. Oehlmann, Malte & Glenk, Klaus & Lloyd-Smith, Patrick & Meyerhoff, Jürgen, 2021. "Quantifying landscape externalities of renewable energy development: Implications of attribute cut-offs in choice experiments," Resource and Energy Economics, Elsevier, vol. 65(C).
  95. Lienhoop, Nele, 2018. "Acceptance of wind energy and the role of financial and procedural participation: An investigation with focus groups and choice experiments," Energy Policy, Elsevier, vol. 118(C), pages 97-105.
  96. Motz, Alessandra, 2021. "Consumer acceptance of the energy transition in Switzerland: The role of attitudes explained through a hybrid discrete choice model," Energy Policy, Elsevier, vol. 151(C).
  97. Kim, Yeonbae, 2005. "Estimation of consumer preferences on new telecommunications services: IMT-2000 service in Korea," Information Economics and Policy, Elsevier, vol. 17(1), pages 73-84, January.
  98. Kim, Hyo-Jin & Kim, Ju-Hee & Yoo, Seung-Hoon, 2019. "Social acceptance of offshore wind energy development in South Korea: Results from a choice experiment survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
  99. Mousumi Roy & Lassi Linnanen & Sankha Chakrabortty & Parimal Pal, 2019. "Developing a Closed-Loop Water Conservation System at Micro Level Through Circular Economy Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4157-4170, September.
  100. de Ayala, Amaia & Mariel, Petr & Meyerhoff, Jürgen, 2014. "Transferring landscape values using discrete choice experiments: Is meta-analysis an option?," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 14(01), pages 1-16, June.
  101. Claire Burch & Rebecca Loraamm & Travis Gliedt, 2020. "The “Green on Green” Conflict in Wind Energy Development: A Case Study of Environmentally Conscious Individuals in Oklahoma, USA," Sustainability, MDPI, vol. 12(19), pages 1-22, October.
  102. Bishop, Ian D. & Stock, Christian, 2010. "Using collaborative virtual environments to plan wind energy installations," Renewable Energy, Elsevier, vol. 35(10), pages 2348-2355.
  103. Polatidis, Heracles & Haralambopoulos, Dias A., 2007. "Renewable energy systems: A societal and technological platform," Renewable Energy, Elsevier, vol. 32(2), pages 329-341.
  104. Torres Sibille, Ana del Carmen & Cloquell-Ballester, Víctor-Andrés & Cloquell-Ballester, Vicente-Agustín & Darton, Richard, 2009. "Development and validation of a multicriteria indicator for the assessment of objective aesthetic impact of wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 40-66, January.
  105. García, Jorge H. & Cherry, Todd L. & Kallbekken, Steffen & Torvanger, Asbjørn, 2016. "Willingness to accept local wind energy development: Does the compensation mechanism matter?," Energy Policy, Elsevier, vol. 99(C), pages 165-173.
  106. Cicia, Gianni & Cembalo, Luigi & Del Giudice, Teresa & Palladino, Andrea, 2012. "Fossil energy versus nuclear, wind, solar and agricultural biomass: Insights from an Italian national survey," Energy Policy, Elsevier, vol. 42(C), pages 59-66.
  107. Rahel Renata Tanujaya & Chul-Yong Lee & JongRoul Woo & Sung-Yoon Huh & Min-Kyu Lee, 2020. "Quantifying Public Preferences for Community-Based Renewable Energy Projects in South Korea," Energies, MDPI, vol. 13(9), pages 1-13, May.
  108. Abdullah, Sabah & Jeanty, P. Wilner, 2011. "Willingness to pay for renewable energy: Evidence from a contingent valuation survey in Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2974-2983, August.
  109. Petter Gudding & Gorm Kipperberg & Craig Bond & Kelly Cullen & Eric Steltzer, 2018. "When a Good Is a Bad (or a Bad Is a Good)—Analysis of Data from an Ambiguous Nonmarket Valuation Setting," Sustainability, MDPI, vol. 10(1), pages 1-16, January.
  110. Polinori, Paolo, 2019. "Wind energy deployment in wind farm aging context. Appraising an onshore wind farm enlargement project: A contingent valuation study in the Center of Italy," Energy Economics, Elsevier, vol. 79(C), pages 206-220.
  111. Cranmer, Alexana & Broughel, Anna Ebers & Ericson, Jonathan & Goldberg, Mike & Dharni, Kira, 2023. "Getting to 30 GW by 2030: Visual preferences of coastal residents for offshore wind farms on the US East Coast," Energy Policy, Elsevier, vol. 173(C).
  112. Wenting Chen & Phoebe Koundouri & Osiel Gonzalez Davila & Claire Haggett & David Rudolph & Shiau-Yun Lu & Chia-Fa Chi & Jason Yu & Lars Golmen & Yung-Hsiang Ying, 2020. "Social acceptance and socioeconomic effects of Multi-Use Offshore Developments:Theory and Applications in MERMAID and TROPOS projects," DEOS Working Papers 2021, Athens University of Economics and Business.
  113. Plum, Christiane & Olschewski, Roland & Jobin, Marilou & van Vliet, Oscar, 2019. "Public preferences for the Swiss electricity system after the nuclear phase-out: A choice experiment," Energy Policy, Elsevier, vol. 130(C), pages 181-196.
  114. Peri, Erez & Becker, Nir & Tal, Alon, 2020. "What really undermines public acceptance of wind turbines? A choice experiment analysis in Israel," Land Use Policy, Elsevier, vol. 99(C).
  115. Ladenburg, Jacob & Lutzeyer, Sanja, 2012. "The economics of visual disamenity reductions of offshore wind farms—Review and suggestions from an emerging field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6793-6802.
  116. Aravena, Claudia & Hutchinson, W. George & Longo, Alberto, 2012. "Environmental pricing of externalities from different sources of electricity generation in Chile," Energy Economics, Elsevier, vol. 34(4), pages 1214-1225.
  117. Drechsler, Martin & Ohl, Cornelia & Meyerhoff, Jürgen & Eichhorn, Marcus & Monsees, Jan, 2011. "Combining spatial modeling and choice experiments for the optimal spatial allocation of wind turbines," Energy Policy, Elsevier, vol. 39(6), pages 3845-3854, June.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.