IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i22p12755-d681940.html
   My bibliography  Save this article

Protecting the Local Landscape or Reducing Greenhouse Gas Emissions? A Study on Social Acceptance and Preferences towards the Installation of a Wind Farm

Author

Listed:
  • Maria De Salvo

    (Department of Agriculture, Food and Environment, University of Catania, 95131 Catania, Italy
    Centre for the Conservation and Management of Nature and Agroecosystems, University of Catania, 95131 Catania, Italy)

  • Sandra Notaro

    (Department of Economics and Management, University of Trento, 38122 Trento, Italy)

  • Giuseppe Cucuzza

    (Department of Agriculture, Food and Environment, University of Catania, 95131 Catania, Italy
    Centre for the Conservation and Management of Nature and Agroecosystems, University of Catania, 95131 Catania, Italy)

  • Laura Giuffrida

    (Department of Agriculture, Food and Environment, University of Catania, 95131 Catania, Italy)

  • Giovanni Signorello

    (Department of Agriculture, Food and Environment, University of Catania, 95131 Catania, Italy
    Centre for the Conservation and Management of Nature and Agroecosystems, University of Catania, 95131 Catania, Italy)

Abstract

We conducted a contingent valuation survey to estimate the social acceptance and preferences of a local community towards the installation of a wind farm in a countryside area presenting significant aesthetic, cultural, and identity place attributes. We focused on two opposite potential externalities caused by wind turbines. The first relates to the contribution to the reduction of greenhouse gas emission through the production of green energy. The second concerns the degradation of rural landscape assets. In the sample, we identified factors for or against the installation of the wind farm. People in favor of the wind farm were asked to state their willingness to pay for reducing the effect of global warming by purchasing electricity produced by wind turbines. People against it were solicited to declare their willingness to pay to avoid landscape loss. Welfare measures were elicited using a payment card elicitation format and quantified through different estimation models. An analysis of data revealed high heterogeneity in attitudes, beliefs, and preferences of citizens towards the two potentially competing environmental goods. The willingness to pay for reducing the effect of global warming was much higher than the willingness to pay for avoiding the loss of the rural landscape.

Suggested Citation

  • Maria De Salvo & Sandra Notaro & Giuseppe Cucuzza & Laura Giuffrida & Giovanni Signorello, 2021. "Protecting the Local Landscape or Reducing Greenhouse Gas Emissions? A Study on Social Acceptance and Preferences towards the Installation of a Wind Farm," Sustainability, MDPI, vol. 13(22), pages 1-19, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12755-:d:681940
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/22/12755/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/22/12755/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simona Bigerna & Paolo Polinori, 2015. "Assessing the Determinants of Renewable Electricity Acceptance Integrating Meta-Analysis Regression and a Local Comprehensive Survey," Sustainability, MDPI, vol. 7(9), pages 1-24, August.
    2. Groothuis, Peter A. & Groothuis, Jana D. & Whitehead, John C., 2008. "Green vs. green: Measuring the compensation required to site electrical generation windmills in a viewshed," Energy Policy, Elsevier, vol. 36(4), pages 1545-1550, April.
    3. Caporale, Diana & Sangiorgio, Valentino & Amodio, Alessandro & De Lucia, Caterina, 2020. "Multi-criteria and focus group analysis for social acceptance of wind energy," Energy Policy, Elsevier, vol. 140(C).
    4. Abbie McCartney, 2006. "The Social Value of Seascapes in the Jurien Bay Marine Park: An Assessment of Positive and Negative Preferences for Change," Journal of Agricultural Economics, Wiley Blackwell, vol. 57(3), pages 577-594, September.
    5. Aitken, Mhairi, 2010. "Wind power and community benefits: Challenges and opportunities," Energy Policy, Elsevier, vol. 38(10), pages 6066-6075, October.
    6. Wolsink, Maarten, 2007. "Wind power implementation: The nature of public attitudes: Equity and fairness instead of 'backyard motives'," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1188-1207, August.
    7. Moran, Dominic & Sherrington, Chris, 2007. "An economic assessment of windfarm power generation in Scotland including externalities," Energy Policy, Elsevier, vol. 35(5), pages 2811-2825, May.
    8. Boyle, Kevin J. & Boatwright, Jessica & Brahma, Sreeya & Xu, Weibin, 2019. "NIMBY, not, in siting community wind farms," Resource and Energy Economics, Elsevier, vol. 57(C), pages 85-100.
    9. Ottinger, Gwen & Hargrave, Timothy J. & Hopson, Eric, 2014. "Procedural justice in wind facility siting: Recommendations for state-led siting processes," Energy Policy, Elsevier, vol. 65(C), pages 662-669.
    10. Bidwell, David, 2013. "The role of values in public beliefs and attitudes towards commercial wind energy," Energy Policy, Elsevier, vol. 58(C), pages 189-199.
    11. Strazzera, Elisabetta & Mura, Marina & Contu, Davide, 2012. "Combining choice experiments with psychometric scales to assess the social acceptability of wind energy projects: A latent class approach," Energy Policy, Elsevier, vol. 48(C), pages 334-347.
    12. Slattery, Michael C. & Johnson, Becky L. & Swofford, Jeffrey A. & Pasqualetti, Martin J., 2012. "The predominance of economic development in the support for large-scale wind farms in the U.S. Great Plains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3690-3701.
    13. Mirasgedis, S. & Tourkolias, C. & Tzovla, E. & Diakoulaki, D., 2014. "Valuing the visual impact of wind farms: An application in South Evia, Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 296-311.
    14. Richard Cowell & Gill Bristow & Max Munday, 2011. "Acceptance, acceptability and environmental justice: the role of community benefits in wind energy development," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 54(4), pages 539-557.
    15. Hall, N. & Ashworth, P. & Devine-Wright, P., 2013. "Societal acceptance of wind farms: Analysis of four common themes across Australian case studies," Energy Policy, Elsevier, vol. 58(C), pages 200-208.
    16. Timothy C. Haab & Kenneth E. McConnell, 2002. "Valuing Environmental and Natural Resources," Books, Edward Elgar Publishing, number 2427.
    17. Alvarez-Farizo, Begona & Hanley, Nick, 2002. "Using conjoint analysis to quantify public preferences over the environmental impacts of wind farms. An example from Spain," Energy Policy, Elsevier, vol. 30(2), pages 107-116, January.
    18. Cameron, Trudy Ann & Huppert, Daniel D., 1989. "OLS versus ML estimation of non-market resource values with payment card interval data," Journal of Environmental Economics and Management, Elsevier, vol. 17(3), pages 230-246, November.
    19. Gross, Catherine, 2007. "Community perspectives of wind energy in Australia: The application of a justice and community fairness framework to increase social acceptance," Energy Policy, Elsevier, vol. 35(5), pages 2727-2736, May.
    20. Martin D. Heintzelman & Carrie M. Tuttle, 2012. "Values in the Wind: A Hedonic Analysis of Wind Power Facilities," Land Economics, University of Wisconsin Press, vol. 88(3), pages 571-588.
    21. Jobert, Arthur & Laborgne, Pia & Mimler, Solveig, 2007. "Local acceptance of wind energy: Factors of success identified in French and German case studies," Energy Policy, Elsevier, vol. 35(5), pages 2751-2760, May.
    22. Ek, Kristina & Persson, Lars, 2014. "Wind farms — Where and how to place them? A choice experiment approach to measure consumer preferences for characteristics of wind farm establishments in Sweden," Ecological Economics, Elsevier, vol. 105(C), pages 193-203.
    23. Kermagoret, Charlène & Levrel, Harold & Carlier, Antoine & Dachary-Bernard, Jeanne, 2016. "Individual preferences regarding environmental offset and welfare compensation: a choice experiment application to an offshore wind farm project," Ecological Economics, Elsevier, vol. 129(C), pages 230-240.
    24. Gibbons, Stephen, 2015. "Gone with the wind: Valuing the visual impacts of wind turbines through house prices," Journal of Environmental Economics and Management, Elsevier, vol. 72(C), pages 177-196.
    25. Ben Hoen & Ryan Wiser & Peter Cappers & Mark Thayer & Gautam Sethi, 2011. "Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices," Journal of Real Estate Research, American Real Estate Society, vol. 33(3), pages 279-316.
    26. Mattmann, Matteo & Logar, Ivana & Brouwer, Roy, 2016. "Wind power externalities: A meta-analysis," Ecological Economics, Elsevier, vol. 127(C), pages 23-36.
    27. Pepermans, Yves & Loots, Ilse, 2013. "Wind farm struggles in Flanders fields: A sociological perspective," Energy Policy, Elsevier, vol. 59(C), pages 321-328.
    28. Jinjin Guan & Harald Zepp, 2020. "Factors Affecting the Community Acceptance of Onshore Wind Farms: A Case Study of the Zhongying Wind Farm in Eastern China," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    29. Wolsink, Maarten, 2012. "Undesired reinforcement of harmful ‘self-evident truths’ concerning the implementation of wind power," Energy Policy, Elsevier, vol. 48(C), pages 83-87.
    30. Nadai, Alain, 2007. ""Planning", "siting" and the local acceptance of wind power: Some lessons from the French case," Energy Policy, Elsevier, vol. 35(5), pages 2715-2726, May.
    31. Ie Zheng Goh & Nitanan Koshy Matthew, 2021. "Residents’ Willingness to Pay for a Carbon Tax," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    32. Liu, Zhilin & Liao, Lu & Mei, Ciqi, 2018. "Not-in-my-backyard but let’s talk: Explaining public opposition to facility siting in urban China," Land Use Policy, Elsevier, vol. 77(C), pages 471-478.
    33. Faccioli, Michela & Czajkowski, Mikołaj & Glenk, Klaus & Martin-Ortega, Julia, 2020. "Environmental attitudes and place identity as determinants of preferences for ecosystem services," Ecological Economics, Elsevier, vol. 174(C).
    34. Wolsink, Maarten, 2000. "Wind power and the NIMBY-myth: institutional capacity and the limited significance of public support," Renewable Energy, Elsevier, vol. 21(1), pages 49-64.
    35. Welsh, Michael P. & Poe, Gregory L., 1998. "Elicitation Effects in Contingent Valuation: Comparisons to a Multiple Bounded Discrete Choice Approach," Journal of Environmental Economics and Management, Elsevier, vol. 36(2), pages 170-185, September.
    36. Lee, Amy H.I. & Chen, Hsing Hung & Kang, He-Yau, 2009. "Multi-criteria decision making on strategic selection of wind farms," Renewable Energy, Elsevier, vol. 34(1), pages 120-126.
    37. Riera, Pere & Signorello, Giovanni & Thiene, Mara & Mahieu, Pierre-Alexandre & Navrud, Ståle & Kaval, Pamela & Rulleau, Benedicte & Mavsar, Robert & Madureira, Lívia & Meyerhoff, Jürgen & Elsasser, Pe, 2012. "Non-market valuation of forest goods and services: Good practice guidelines," Journal of Forest Economics, Elsevier, vol. 18(4), pages 259-270.
    38. Ek, Kristina, 2005. "Public and private attitudes towards "green" electricity: the case of Swedish wind power," Energy Policy, Elsevier, vol. 33(13), pages 1677-1689, September.
    39. Cohen, Jed J. & Reichl, Johannes & Schmidthaler, Michael, 2014. "Re-focussing research efforts on the public acceptance of energy infrastructure: A critical review," Energy, Elsevier, vol. 76(C), pages 4-9.
    40. Chen, Bixia & Nakama, Yuei & Zhang, Yaoqi, 2017. "Traditional village forest landscapes: Tourists' attitudes and preferences for conservation," Tourism Management, Elsevier, vol. 59(C), pages 652-662.
    41. Sunak, Yasin & Madlener, Reinhard, 2016. "The impact of wind farm visibility on property values: A spatial difference-in-differences analysis," Energy Economics, Elsevier, vol. 55(C), pages 79-91.
    42. Aravena, Claudia & Martinsson, Peter & Scarpa, Riccardo, 2014. "Does money talk? — The effect of a monetary attribute on the marginal values in a choice experiment," Energy Economics, Elsevier, vol. 44(C), pages 483-491.
    43. García, Jorge H. & Cherry, Todd L. & Kallbekken, Steffen & Torvanger, Asbjørn, 2016. "Willingness to accept local wind energy development: Does the compensation mechanism matter?," Energy Policy, Elsevier, vol. 99(C), pages 165-173.
    44. Janhunen, Sari & Hujala, Maija & Pätäri, Satu, 2014. "Owners of second homes, locals and their attitudes towards future rural wind farm," Energy Policy, Elsevier, vol. 73(C), pages 450-460.
    45. Lauren Knapp & Jacob Ladenburg, 2015. "How Spatial Relationships Influence Economic Preferences for Wind Power—A Review," Energies, MDPI, vol. 8(6), pages 1-25, June.
    46. Langer, Katharina & Decker, Thomas & Roosen, Jutta & Menrad, Klaus, 2016. "A qualitative analysis to understand the acceptance of wind energy in Bavaria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 248-259.
    47. Polinori, Paolo, 2019. "Wind energy deployment in wind farm aging context. Appraising an onshore wind farm enlargement project: A contingent valuation study in the Center of Italy," Energy Economics, Elsevier, vol. 79(C), pages 206-220.
    48. Lang, Corey & Opaluch, James J. & Sfinarolakis, George, 2014. "The windy city: Property value impacts of wind turbines in an urban setting," Energy Economics, Elsevier, vol. 44(C), pages 413-421.
    49. Guo, Yue & Ru, Peng & Su, Jun & Anadon, Laura Diaz, 2015. "Not in my backyard, but not far away from me: Local acceptance of wind power in China," Energy, Elsevier, vol. 82(C), pages 722-733.
    50. Musall, Fabian David & Kuik, Onno, 2011. "Local acceptance of renewable energy--A case study from southeast Germany," Energy Policy, Elsevier, vol. 39(6), pages 3252-3260, June.
    51. Peri, Erez & Becker, Nir & Tal, Alon, 2020. "What really undermines public acceptance of wind turbines? A choice experiment analysis in Israel," Land Use Policy, Elsevier, vol. 99(C).
    52. Ladenburg, Jacob & Lutzeyer, Sanja, 2012. "The economics of visual disamenity reductions of offshore wind farms—Review and suggestions from an emerging field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6793-6802.
    53. Kristina Ek & Simon Matti, 2015. "Valuing the local impacts of a large scale wind power establishment in northern Sweden: public and private preferences toward economic, environmental and sociocultural values," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 58(8), pages 1327-1345, August.
    54. Jones, Christopher R. & Eiser, J. Richard, 2009. "Identifying predictors of attitudes towards local onshore wind development with reference to an English case study," Energy Policy, Elsevier, vol. 37(11), pages 4604-4614, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    2. Langer, Katharina & Decker, Thomas & Roosen, Jutta & Menrad, Klaus, 2016. "A qualitative analysis to understand the acceptance of wind energy in Bavaria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 248-259.
    3. Petrova, Maria A., 2016. "From NIMBY to acceptance: Toward a novel framework — VESPA — For organizing and interpreting community concerns," Renewable Energy, Elsevier, vol. 86(C), pages 1280-1294.
    4. Peri, Erez & Becker, Nir & Tal, Alon, 2020. "What really undermines public acceptance of wind turbines? A choice experiment analysis in Israel," Land Use Policy, Elsevier, vol. 99(C).
    5. Zerrahn, Alexander & Krekel, Christian, 2015. "Sowing the Wind and Reaping the Whirlwind? The Effect of Wind Turbines on Residential Well-Being," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112956, Verein für Socialpolitik / German Economic Association.
    6. Brennan, Noreen & van Rensburg, Thomas M., 2020. "Public preferences for wind farms involving electricity trade and citizen engagement in Ireland," Energy Policy, Elsevier, vol. 147(C).
    7. Caporale, Diana & Sangiorgio, Valentino & Amodio, Alessandro & De Lucia, Caterina, 2020. "Multi-criteria and focus group analysis for social acceptance of wind energy," Energy Policy, Elsevier, vol. 140(C).
    8. Boyle, Kevin J. & Boatwright, Jessica & Brahma, Sreeya & Xu, Weibin, 2019. "NIMBY, not, in siting community wind farms," Resource and Energy Economics, Elsevier, vol. 57(C), pages 85-100.
    9. Mattmann, Matteo & Logar, Ivana & Brouwer, Roy, 2016. "Wind power externalities: A meta-analysis," Ecological Economics, Elsevier, vol. 127(C), pages 23-36.
    10. Bauwens, Thomas & Devine-Wright, Patrick, 2018. "Positive energies? An empirical study of community energy participation and attitudes to renewable energy," Energy Policy, Elsevier, vol. 118(C), pages 612-625.
    11. Leer Jørgensen, Marie & Anker, Helle Tegner & Lassen, Jesper, 2020. "Distributive fairness and local acceptance of wind turbines: The role of compensation schemes," Energy Policy, Elsevier, vol. 138(C).
    12. Olivier JOALLAND & Tina RAMBONILAZA, 2017. "Valeur touristique des aménités environnementales et nuisances associées aux infrastructures d’énergie renouvelable : une approche hédonique spatiale," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 46, pages 93-115.
    13. Langer, Katharina & Decker, Thomas & Menrad, Klaus, 2017. "Public participation in wind energy projects located in Germany: Which form of participation is the key to acceptance?," Renewable Energy, Elsevier, vol. 112(C), pages 63-73.
    14. le Maitre, Julia & Ryan, Geraldine & Power, Bernadette & O'Connor, Ellen, 2023. "Empowering onshore wind energy: A national choice experiment on financial benefits and citizen participation," Energy Policy, Elsevier, vol. 173(C).
    15. Brennan, Noreen & Van Rensburg, Thomas M, 2016. "Wind farm externalities and public preferences for community consultation in Ireland: A discrete choice experiments approach," Energy Policy, Elsevier, vol. 94(C), pages 355-365.
    16. Hyland, Marie & Bertsch, Valentin, 2018. "The Role of Community Involvement Mechanisms in Reducing Resistance to Energy Infrastructure Development," Ecological Economics, Elsevier, vol. 146(C), pages 447-474.
    17. Landeta-Manzano, Beñat & Arana-Landín, Germán & Calvo, Pilar M. & Heras-Saizarbitoria, Iñaki, 2018. "Wind energy and local communities: A manufacturer’s efforts to gain acceptance," Energy Policy, Elsevier, vol. 121(C), pages 314-324.
    18. Simona Bigerna & Paolo Polinori, 2015. "Assessing the Determinants of Renewable Electricity Acceptance Integrating Meta-Analysis Regression and a Local Comprehensive Survey," Sustainability, MDPI, vol. 7(9), pages 1-24, August.
    19. Hübner, Gundula & Leschinger, Valentin & Müller, Florian J.Y. & Pohl, Johannes, 2023. "Broadening the social acceptance of wind energy – An Integrated Acceptance Model," Energy Policy, Elsevier, vol. 173(C).
    20. Kontogianni, A. & Tourkolias, Ch. & Skourtos, M. & Damigos, D., 2014. "Planning globally, protesting locally: Patterns in community perceptions towards the installation of wind farms," Renewable Energy, Elsevier, vol. 66(C), pages 170-177.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12755-:d:681940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.