IDEAS home Printed from https://ideas.repec.org/p/zbw/kitiip/46.html
   My bibliography  Save this paper

Willingness to pay for residential PV: Reconciling gaps between acceptance and adoption

Author

Listed:
  • Khuong, Phuong M.
  • Scheller, Fabian
  • McKenna, Russell
  • Keles, Dogan
  • Fichtner, Wolf

Abstract

Photovoltaic (PV) has recorded an impressive development in the last years. The increasing economic potential and further technological improvement will continue to reduce the cost of PV. However, it is not yet well adopted by household customers. Adversely, there is lacking empirical evidence for understanding residential PV adoption behaviour, which this study addresses with empirical research. Although a variety of models can be used to explain social acceptance (SA) and willingness to pay (WTP) for renewable energy, they overlook the connection between SA and WTP in the final purchase decision of a decision-maker. Based on a survey of both SA and WTP in the same observation sample of 2039 Vietnamese residents, this study introduces well-established models with a new linking psychological and economic aspects to measure multiple outcomes involving residential PV behaviours to testing hypotheses with no precedent in the literature. The theoretical and integrative moderated mediation models help to understand residential PV behaviour and suggest solutions for development by revealing how different factors affect SA and WTP in different manners. Environmental interest reveals the predictive power within the SA and WTP behaviour models. Meanwhile, PV knowledge drives SA, but not WTP in Vietnam. Attitude and Perceived behavioural control not only impact SA and WTP directly but also mediate the effect of Environmental interest and SA and WTP. Age & Marital status & Children and Place of residence are important covariates that drive in the SA and WTP models, respectively. Lastly, Income is the covariate in the SA model, but the moderator in the WTP model. In practical implications, this study provides evidence that residential PV is a lifestyle product rather than an economical product, but it is not considered as an essential good for household customers. Thereby, suggestions are given to policymakers and stakeholders to promote market development.

Suggested Citation

  • Khuong, Phuong M. & Scheller, Fabian & McKenna, Russell & Keles, Dogan & Fichtner, Wolf, 2020. "Willingness to pay for residential PV: Reconciling gaps between acceptance and adoption," Working Paper Series in Production and Energy 46, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
  • Handle: RePEc:zbw:kitiip:46
    DOI: 10.5445/IR/1000124530
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/225982/1/1737363097.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.5445/IR/1000124530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tan, Chin-Seang & Ooi, Hooi-Yin & Goh, Yen-Nee, 2017. "A moral extension of the theory of planned behavior to predict consumers’ purchase intention for energy-efficient household appliances in Malaysia," Energy Policy, Elsevier, vol. 107(C), pages 459-471.
    2. Scarpa, Riccardo & Willis, Ken, 2010. "Willingness-to-pay for renewable energy: Primary and discretionary choice of British households' for micro-generation technologies," Energy Economics, Elsevier, vol. 32(1), pages 129-136, January.
    3. Barr, Stewart & Gilg, Andrew W & Ford, Nicholas, 2005. "The household energy gap: examining the divide between habitual- and purchase-related conservation behaviours," Energy Policy, Elsevier, vol. 33(11), pages 1425-1444, July.
    4. Pablo-Romero, María del P. & Pozo-Barajas, Rafael & Yñiguez, Rocío, 2017. "Global changes in residential energy consumption," Energy Policy, Elsevier, vol. 101(C), pages 342-352.
    5. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.
    6. Burke, Paul J. & Widnyana, Jinnie & Anjum, Zeba & Aisbett, Emma & Resosudarmo, Budy & Baldwin, Kenneth G.H., 2019. "Overcoming barriers to solar and wind energy adoption in two Asian giants: India and Indonesia," Energy Policy, Elsevier, vol. 132(C), pages 1216-1228.
    7. Yadav, Rambalak & Pathak, Govind S., 2017. "Determinants of Consumers' Green Purchase Behavior in a Developing Nation: Applying and Extending the Theory of Planned Behavior," Ecological Economics, Elsevier, vol. 134(C), pages 114-122.
    8. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    9. Guomin Li & Wei Li & Zihan Jin & Zhihao Wang, 2019. "Influence of Environmental Concern and Knowledge on Households’ Willingness to Purchase Energy-Efficient Appliances: A Case Study in Shanxi, China," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    10. Sardianou, E. & Genoudi, P., 2013. "Which factors affect the willingness of consumers to adopt renewable energies?," Renewable Energy, Elsevier, vol. 57(C), pages 1-4.
    11. Kardooni, Roozbeh & Yusoff, Sumiani Binti & Kari, Fatimah Binti, 2016. "Renewable energy technology acceptance in Peninsular Malaysia," Energy Policy, Elsevier, vol. 88(C), pages 1-10.
    12. Gilly, Mary C & Zeithaml, Valarie A, 1985. "The Elderly Consumer and Adoption of Technologies," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 12(3), pages 353-347, December.
    13. Kamonthip Maichum & Surakiat Parichatnon & Ke-Chung Peng, 2016. "Application of the Extended Theory of Planned Behavior Model to Investigate Purchase Intention of Green Products among Thai Consumers," Sustainability, MDPI, vol. 8(10), pages 1-20, October.
    14. Welsch, Heinz & Kühling, Jan, 2009. "Determinants of pro-environmental consumption: The role of reference groups and routine behavior," Ecological Economics, Elsevier, vol. 69(1), pages 166-176, November.
    15. Klaus, Geraldine & Ernst, Andreas & Oswald, Lisa, 2020. "Psychological factors influencing laypersons’ acceptance of climate engineering, climate change mitigation and business as usual scenarios," Technology in Society, Elsevier, vol. 60(C).
    16. Borchers, Allison M. & Duke, Joshua M. & Parsons, George R., 2007. "Does willingness to pay for green energy differ by source?," Energy Policy, Elsevier, vol. 35(6), pages 3327-3334, June.
    17. Michelsen, Carl Christian & Madlener, Reinhard, 2016. "Switching from fossil fuel to renewables in residential heating systems: An empirical study of homeowners' decisions in Germany," Energy Policy, Elsevier, vol. 89(C), pages 95-105.
    18. Franceschinis, Cristiano & Thiene, Mara & Scarpa, Riccardo & Rose, John & Moretto, Michele & Cavalli, Raffaele, 2017. "Adoption of renewable heating systems: An empirical test of the diffusion of innovation theory," Energy, Elsevier, vol. 125(C), pages 313-326.
    19. Sommerfeld, Jeff & Buys, Laurie & Vine, Desley, 2017. "Residential consumers’ experiences in the adoption and use of solar PV," Energy Policy, Elsevier, vol. 105(C), pages 10-16.
    20. Shidore, Sarang & Busby, Joshua W., 2019. "What explains India's embrace of solar? State-led energy transition in a developmental polity," Energy Policy, Elsevier, vol. 129(C), pages 1179-1189.
    21. Barroco, Jose & Herrera, Maria, 2019. "Clearing barriers to project finance for renewable energy in developing countries: A Philippines case study," Energy Policy, Elsevier, vol. 135(C).
    22. Rai, Varun & Reeves, D. Cale & Margolis, Robert, 2016. "Overcoming barriers and uncertainties in the adoption of residential solar PV," Renewable Energy, Elsevier, vol. 89(C), pages 498-505.
    23. Phuong Minh Khuong & Russell McKenna & Wolf Fichtner, 2020. "A Cost-Effective and Transferable Methodology for Rooftop PV Potential Assessment in Developing Countries," Energies, MDPI, vol. 13(10), pages 1-46, May.
    24. Korcaj, Liridon & Hahnel, Ulf J.J. & Spada, Hans, 2015. "Intentions to adopt photovoltaic systems depend on homeowners' expected personal gains and behavior of peers," Renewable Energy, Elsevier, vol. 75(C), pages 407-415.
    25. Jager, Wander, 2006. "Stimulating the diffusion of photovoltaic systems: A behavioural perspective," Energy Policy, Elsevier, vol. 34(14), pages 1935-1943, September.
    26. Bashiri, Ali & Alizadeh, Sasan H., 2018. "The analysis of demographics, environmental and knowledge factors affecting prospective residential PV system adoption: A study in Tehran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3131-3139.
    27. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    28. Labay, Duncan G & Kinnear, Thomas C, 1981. "Exploring the Consumer Decision Process in the Adoption of Solar Energy Systems," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 8(3), pages 271-278, December.
    29. Arts, Joep W.C. & Frambach, Ruud T. & Bijmolt, Tammo H.A., 2011. "Generalizations on consumer innovation adoption: A meta-analysis on drivers of intention and behavior," International Journal of Research in Marketing, Elsevier, vol. 28(2), pages 134-144.
    30. Yaqoot, Mohammed & Diwan, Parag & Kandpal, Tara C., 2016. "Review of barriers to the dissemination of decentralized renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 477-490.
    31. Kai Chen & Ting Deng, 2016. "Research on the Green Purchase Intentions from the Perspective of Product Knowledge," Sustainability, MDPI, vol. 8(9), pages 1-16, September.
    32. Sudbury-Riley, Lynn & Kohlbacher, Florian, 2016. "Ethically minded consumer behavior: Scale review, development, and validation," Journal of Business Research, Elsevier, vol. 69(8), pages 2697-2710.
    33. Faiers, Adam & Neame, Charles, 2006. "Consumer attitudes towards domestic solar power systems," Energy Policy, Elsevier, vol. 34(14), pages 1797-1806, September.
    34. Ritsuko Ozaki, 2011. "Adopting sustainable innovation: what makes consumers sign up to green electricity?," Business Strategy and the Environment, Wiley Blackwell, vol. 20(1), pages 1-17, January.
    35. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
    36. Rao, K. Usha & Kishore, V.V.N., 2010. "A review of technology diffusion models with special reference to renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1070-1078, April.
    37. Behuria, Pritish, 2020. "The politics of late late development in renewable energy sectors: Dependency and contradictory tensions in India’s National Solar Mission," World Development, Elsevier, vol. 126(C).
    38. Schumacher, K. & Krones, F. & McKenna, R. & Schultmann, F., 2019. "Public acceptance of renewable energies and energy autonomy: A comparative study in the French, German and Swiss Upper Rhine region," Energy Policy, Elsevier, vol. 126(C), pages 315-332.
    39. Le Viet Phu, 2020. "Electricity price and residential electricity demand in Vietnam," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(4), pages 509-535, October.
    40. Shahsavari, Amir & Akbari, Morteza, 2018. "Potential of solar energy in developing countries for reducing energy-related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 275-291.
    41. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    42. Islam, Towhidul & Meade, Nigel, 2013. "The impact of attribute preferences on adoption timing: The case of photo-voltaic (PV) solar cells for household electricity generation," Energy Policy, Elsevier, vol. 55(C), pages 521-530.
    43. Claudy, Marius C. & Michelsen, Claus & O'Driscoll, Aidan, 2011. "The diffusion of microgeneration technologies - assessing the influence of perceived product characteristics on home owners' willingness to pay," Energy Policy, Elsevier, vol. 39(3), pages 1459-1469, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alipour, M. & Salim, H. & Stewart, Rodney A. & Sahin, Oz, 2020. "Predictors, taxonomy of predictors, and correlations of predictors with the decision behaviour of residential solar photovoltaics adoption: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    2. Bashiri, Ali & Alizadeh, Sasan H., 2018. "The analysis of demographics, environmental and knowledge factors affecting prospective residential PV system adoption: A study in Tehran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3131-3139.
    3. Hackbarth, André, 2018. "Attitudes, preferences, and intentions of German households concerning participation in peer-to-peer electricity trading," Reutlingen Working Papers on Marketing & Management 2019-2, Reutlingen University, ESB Business School.
    4. Hackbarth, André & Löbbe, Sabine, 2020. "Attitudes, preferences, and intentions of German households concerning participation in peer-to-peer electricity trading," Energy Policy, Elsevier, vol. 138(C).
    5. Fabian Scheller & Isabel Doser & Daniel Sloot & Russell McKenna & Thomas Bruckner, 2020. "Exploring the Role of Stakeholder Dynamics in Residential Photovoltaic Adoption Decisions: A Synthesis of the Literature," Energies, MDPI, vol. 13(23), pages 1-31, November.
    6. Meles, Tensay Hadush & Ryan, Lisa & Mukherjee, Sanghamitra C., 2022. "Heterogeneity in preferences for renewable home heating systems among Irish households," Applied Energy, Elsevier, vol. 307(C).
    7. Fabian Scheller & Isabel Doser & Emily Schulte & Simon Johanning & Russell McKenna & Thomas Bruckner, 2021. "Stakeholder dynamics in residential solar energy adoption: findings from focus group discussions in Germany," Papers 2104.14240, arXiv.org.
    8. Selvakkumaran, Sujeetha & Ahlgren, Erik O., 2019. "Determining the factors of household energy transitions: A multi-domain study," Technology in Society, Elsevier, vol. 57(C), pages 54-75.
    9. Brown, Marilyn A. & Kale, Snehal & Cha, Min-Kyeong & Chapman, Oliver, 2023. "Exploring the willingness of consumers to electrify their homes," Applied Energy, Elsevier, vol. 338(C).
    10. Alipour, Mohammad & Taghikhah, Firouzeh & Irannezhad, Elnaz & Stewart, Rodney A. & Sahin, Oz, 2022. "How the decision to accept or reject PV affects the behaviour of residential battery system adopters," Applied Energy, Elsevier, vol. 318(C).
    11. Briguglio, Marie & Formosa, Glenn, 2017. "When households go solar: Determinants of uptake of a Photovoltaic Scheme and policy insights," Energy Policy, Elsevier, vol. 108(C), pages 154-162.
    12. Jabeen, Gul & Ahmad, Munir & Zhang, Qingyu, 2021. "Perceived critical factors affecting consumers’ intention to purchase renewable generation technologies: Rural-urban heterogeneity," Energy, Elsevier, vol. 218(C).
    13. Goodarzi, Shadi & Masini, Andrea & Aflaki, Sam & Fahimnia, Behnam, 2021. "Right information at the right time: Reevaluating the attitude–behavior gap in environmental technology adoption," International Journal of Production Economics, Elsevier, vol. 242(C).
    14. Liu, Diyi & Qi, Suntong & Xu, Tiantong, 2023. "In the post-subsidy era: How to encourage mere consumers to become prosumers when subsidy reduced?," Energy Policy, Elsevier, vol. 174(C).
    15. Saeid Karimi & Genovaitė Liobikienė & Heshmatollah Saadi & Fatemeh Sepahvand, 2021. "The Influence of Media Usage on Iranian Students’ Pro-Environmental Behaviors: An Application of the Extended Theory of Planned Behavior," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    16. Girod, Bastien & Mayer, Sebastian & Nägele, Florian, 2017. "Economic versus belief-based models: Shedding light on the adoption of novel green technologies," Energy Policy, Elsevier, vol. 101(C), pages 415-426.
    17. Muhammad Yaseen Bhutto & Xiaohui Liu & Yasir Ali Soomro & Myriam Ertz & Yasser Baeshen, 2020. "Adoption of Energy-Efficient Home Appliances: Extending the Theory of Planned Behavior," Sustainability, MDPI, vol. 13(1), pages 1-25, December.
    18. Spyridon Karytsas & Ioannis Vardopoulos & Eleni Theodoropoulou, 2019. "Factors Affecting Sustainable Market Acceptance of Residential Microgeneration Technologies. A Two Time Period Comparative Analysis," Energies, MDPI, vol. 12(17), pages 1-20, August.
    19. Karytsas, Spyridon & Polyzou, Olympia & Karytsas, Constantine, 2019. "Factors affecting willingness to adopt and willingness to pay for a residential hybrid system that provides heating/cooling and domestic hot water," Renewable Energy, Elsevier, vol. 142(C), pages 591-603.
    20. Heiskanen, Eva & Matschoss, Kaisa, 2017. "Understanding the uneven diffusion of building-scale renewable energy systems: A review of household, local and country level factors in diverse European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 580-591.

    More about this item

    Keywords

    Developing country; Willingness to pay; Social acceptance; Residential photovoltaic;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:kitiip:46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://www.iip.kit.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.