Advanced Search
MyIDEAS: Login to save this paper or follow this series

Risk analysis in the evaluation of the international investment opportunities. Advances in modelling and forecasting volatility for risk assessment purposes

Contents:

Author Info

  • Matei, Marius

    ()
    (Ph.D. Student at ESADE Business School, Department of Finance, Barcelona and at National Institute of Economic Research, Romanian Academy, Bucharest)

Abstract

The thesis proposes to assess the risk topic in the context of foreign investment decisions. In identifying two main risk-related concepts, I have split risks in two categories using a unique criterion: the ratio between the endogenous and exogenous content of the problem. According to it, I have built a pool of risks that the company may have entirely or partially under control (forming the endogenous part of the problem), and a pool with exogenous risks that the company cannot control at all, but can assess and build strategies for their management (forming the exogenous part of the problem). In each category I have identified one source of risk, representing the most important of all risks belonging to the same pool. For the endogenous risks part, credit risk (in its extensive version counterparty risk) was selected. Related to this, there have been additionally discussed the topics of systemic risk and of the risk associated to the impact of the activity of the international rating agencies on the firm financing problem when a company proceeded to debt issuance. The other half of the problem involves the risk of the sector the company activates in. I have found that the risk assessment in this category became an econometric problem of volatility forecasting for a portfolio of a number of selected returns. The discussion complicates given the following factors: 1. The scientific world has not reached yet to a consensus on the superiority of a certain model or group of models that measures volatility. As such, forecasted volatility estimates may depend on the model or methodologies to be used, type of data frequency (high or low), selection of the error statistics etc. As such, decision making as regards the opportunity of the investment becomes highly dependent on econometric choices to be made. 2. Multivariate models are computationally intensive due to the parameter estimation problem. If a large number of stocks are included in the portfolio, the number of estimations to be done would be so high that the problem would be extremely difficult to be technically undertaken. 3. Due to high correlation of stocks, the estimation problem becomes particularly imprecise and computationally difficult. As a solution to such problems, I have justified the superiority of one autoregressive heteroskedastic model (PC-GARCH) considering not only estimation performance but also cost saving component. For this purpose, I have run an empirical exercise with a portfolio formed of seven stocks belonging to the US IT sector (Adobe, Apple, Autodesk, Cisco, Dell, Microsoft and 3M) in order to evidentiate advantages of this model. They may be summarized as it follows: PC-GARCH • Minimizes computational efforts (by transforming multivariate GARCH models into univariate ones), by reducing significantly the computational time and getting rid of any problem that may arise from complex data manipulations; • Ensures a tight control of the amount of “noise” due to reducing the number of variables to fewer principal components. This may prove benefic since it may result in more stable correlation estimates; • Produces volatilities and correlations for all variables in the system, including those for which direct GARCH estimation is computationally difficult. As such, I’ve concluded that when using large portfolios formed of hundreds or thousands of stocks, for the scope of volatility (and therefore risk) forecasting, PCGARCH is the most appropriate model to be used.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.ipe.ro/RePEc/WorkingPapers/wpiecf100201.pdf
Our checks indicate that this address may not be valid because: 404 Not Found. If this is indeed the case, please notify (Corina Saman)
Download Restriction: no

Bibliographic Info

Paper provided by Institute for Economic Forecasting in its series Working Papers of Institute for Economic Forecasting with number 100201.

as in new window
Length: 267 pages
Date of creation: Feb 2010
Date of revision:
Handle: RePEc:rjr:wpiecf:100201

Contact details of provider:
Postal: Casa Academiei, Calea 13, Septembrie nr.13, sector 5, Bucureşti 761172
Phone: 004 021 3188148
Fax: 004 021 3188148
Email:
Web page: http://www.ipe.ro/
More information through EDIRC

Related research

Keywords: risk; endogeneity; exogeneity; credit risk; systemic risk; counterparty risk; rating; volatility; forecasting; GARCH; PC-GARCH; principal components; autocorrelation; heteroskedasticity; orthogonality;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Diana Hancock & James A. Wilcox, 1996. "Intraday management of bank reserves: the effects of caps and fees on daylight overdrafts," Proceedings, Board of Governors of the Federal Reserve System (U.S.), pages 870-913.
  2. Brailsford, Timothy J. & Faff, Robert W., 1996. "An evaluation of volatility forecasting techniques," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 419-438, April.
  3. Ercan Balaban & Asli Bayar & Robert Faff, 2006. "Forecasting stock market volatility: Further international evidence," The European Journal of Finance, Taylor & Francis Journals, vol. 12(2), pages 171-188.
  4. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Multivariate GARCH models," Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008.
  5. Nastac, Iulian & Dobrescu, Emilian & Pelinescu, Elena, 2007. "Neuro-Adaptive Model for Financial Forecasting," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 4(3), pages 19-41, September.
  6. Schwert, G William, 1990. "Stock Volatility and the Crash of '87," Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 77-102.
  7. Manuel S. Santos & Michael Woodford, 1993. "Rational Asset Pricing Bubbles," Working Papers 9304, Centro de Investigacion Economica, ITAM.
  8. Tim Bollerslev & Hao Zhou, 2007. "Expected Stock Returns and Variance Risk Premia," CREATES Research Papers 2007-17, School of Economics and Management, University of Aarhus.
  9. G.G. Kaufman, 2000. "Banking and Currency Crises and Systemic Risk: A Taxonomy and Review," DNB Staff Reports (discontinued) 48, Netherlands Central Bank.
  10. Balaban, Ercan, 2004. "Comparative forecasting performance of symmetric and asymmetric conditional volatility models of an exchange rate," Economics Letters, Elsevier, vol. 83(1), pages 99-105, April.
  11. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
  12. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  13. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
  14. Allen, Franklin & Gale, Douglas, 2000. "Bubbles and Crises," Economic Journal, Royal Economic Society, vol. 110(460), pages 236-55, January.
  15. Szilard Pafka & Imre Kondor, 2001. "Evaluating the RiskMetrics Methodology in Measuring Volatility and Value-at-Risk in Financial Markets," Papers cond-mat/0103107, arXiv.org.
  16. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
  17. St. Pierre, Eileen F., 1998. "Estimating EGARCH-M models: Science or art?," The Quarterly Review of Economics and Finance, Elsevier, vol. 38(2), pages 167-180.
  18. Markus K Brunnermeier, 2002. "Bubbles and Crashes," FMG Discussion Papers dp401, Financial Markets Group.
  19. Taylor, Stephen J., 1987. "Forecasting the volatility of currency exchange rates," International Journal of Forecasting, Elsevier, vol. 3(1), pages 159-170.
  20. Schwert, G.W. & Seguin, P.J., 1988. "Heteroskedasticity In Stock Returns," Papers bc_88-02, Rochester, Business - General.
  21. Alan E. H. Speight & David G. McMillan, 2004. "Daily volatility forecasts: reassessing the performance of GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 449-460.
  22. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 371-89, October.
  23. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
  24. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
  25. Richard J. Herring & Susan Wachter, 1999. "Real Estate Booms and Banking Busts: An International Perspective," Center for Financial Institutions Working Papers 99-27, Wharton School Center for Financial Institutions, University of Pennsylvania.
  26. Matei, Marius, 2009. "Assessing Volatility Forecasting Models: Why GARCH Models Take the Lead," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 42-65, December.
  27. Dimson, Elroy & Marsh, Paul, 1990. "Volatility forecasting without data-snooping," Journal of Banking & Finance, Elsevier, vol. 14(2-3), pages 399-421, August.
  28. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
  29. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
  30. Lars Forsberg & Tim Bollerslev, 2002. "Bridging the gap between the distribution of realized (ECU) volatility and ARCH modelling (of the Euro): the GARCH-NIG model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 535-548.
  31. James McAndrews & Samira Rajan, 2000. "The timing and funding of Fedwire funds transfers," Economic Policy Review, Federal Reserve Bank of New York, issue Jul, pages 17-32.
  32. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  33. Aharony, Joseph & Swary, Itzhak, 1996. "Additional evidence on the information-based contagion effects of bank failures," Journal of Banking & Finance, Elsevier, vol. 20(1), pages 57-69, January.
  34. Scutaru, Cornelia & Saman, Corina & Stanica, Cristian, 2008. "Predictability And Complexity In Macroeconomics. The Case Of Gross Fixed Capital Formation In The Romanian Economy," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 5(4), pages 196-205, December.
  35. Duffie, Darrell & Huang, Ming, 1996. " Swap Rates and Credit Quality," Journal of Finance, American Finance Association, vol. 51(3), pages 921-49, July.
  36. Robert Engle, 2001. "GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 157-168, Fall.
  37. Brooks, Chris & Burke, Simon P., 1998. "Forecasting exchange rate volatility using conditional variance models selected by information criteria," Economics Letters, Elsevier, vol. 61(3), pages 273-278, December.
  38. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
  39. A. W. Coats, 1995. "Comment," History of Political Economy, Duke University Press, vol. 27(5), pages 157-161, Supplemen.
  40. Dospinescu, Andrei Silviu, 2005. "Combining The Forecasts Using A Statistical Approach," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 2(2), pages 72-84.
  41. Jordan, John S. & Peek, Joe & Rosengren, Eric S., 2000. "The Market Reaction to the Disclosure of Supervisory Actions: Implications for Bank Transparency," Journal of Financial Intermediation, Elsevier, vol. 9(3), pages 298-319, July.
  42. Pafka, Szilárd & Kondor, Imre, 2001. "Evaluating the RiskMetrics methodology in measuring volatility and Value-at-Risk in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 305-310.
  43. Robert F. Engle & Victor K. Ng, 1991. "Measuring and Testing the Impact of News on Volatility," NBER Working Papers 3681, National Bureau of Economic Research, Inc.
  44. Furfine, Craig H, 2003. " Interbank Exposures: Quantifying the Risk of Contagion," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 35(1), pages 111-28, February.
  45. Albu, Lucian Liviu, 2003. "Short-Term Forecast," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 197-199, June.
  46. Vilasuso, Jon, 2002. "Forecasting exchange rate volatility," Economics Letters, Elsevier, vol. 76(1), pages 59-64, June.
  47. David Walsh & Glenn Yu-Gen Tsou, 1998. "Forecasting index volatility: sampling interval and non-trading effects," Applied Financial Economics, Taylor & Francis Journals, vol. 8(5), pages 477-485.
  48. Philippe Jorion, 1996. "Risk and Turnover in the Foreign Exchange Market," NBER Chapters, in: The Microstructure of Foreign Exchange Markets, pages 19-40 National Bureau of Economic Research, Inc.
  49. Lee, Keun Yeong, 1991. "Are the GARCH models best in out-of-sample performance?," Economics Letters, Elsevier, vol. 37(3), pages 305-308, November.
  50. Chiara Pederzoli, 2006. "Stochastic Volatility and GARCH: a Comparison Based on UK Stock Data," The European Journal of Finance, Taylor & Francis Journals, vol. 12(1), pages 41-59.
  51. Jean Dermine, 1996. "Comment on the paper by NIKLAUS BLATTNER "Capital Adequacy Regulation"," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 132(IV), pages 679-682, December.
  52. Angelini, P. & Maresca, G. & Russo, D., 1996. "Systemic risk in the netting system," Journal of Banking & Finance, Elsevier, vol. 20(5), pages 853-868, June.
  53. Geoffrey F. Loudon & Wing H. Watt & Pradeep K. Yadav, 2000. "An empirical analysis of alternative parametric ARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 117-136.
  54. Tse, Y. K., 1991. "Stock returns volatility in the Tokyo stock exchange," Japan and the World Economy, Elsevier, vol. 3(3), pages 285-298, November.
  55. Mapa, Dennis S., 2004. "A Forecast Comparison of Financial Volatility Models: GARCH (1,1) is not Enough," MPRA Paper 21028, University Library of Munich, Germany.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:rjr:wpiecf:100201. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Corina Saman).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.