Advanced Search
MyIDEAS: Login to save this paper or follow this series

The Variance Profile

Contents:

Author Info

  • Luati, Alessandra
  • Proietti, Tommaso
  • Reale, Marco

Abstract

The variance profile is defined as the power mean of the spectral density function of a stationary stochastic process. It is a continuous and non-decreasing function of the power parameter, p, which returns the minimum of the spectrum (p → −∞), the interpolation error variance (harmonic mean, p = −1), the prediction error variance (geometric mean, p = 0), the unconditional variance (arithmetic mean, p = 1) and the maximum of the spectrum (p → ∞). The variance profile provides a useful characterisation of a stochastic processes; we focus in particular on the class of fractionally integrated processes. Moreover, it enables a direct and immediate derivation of the Szego-Kolmogorov formula and the interpolation error variance formula. The paper proposes a non-parametric estimator of the variance profile based on the power mean of the smoothed sample spectrum, and proves its consistency and its asymptotic normality. From the empirical standpoint, we propose and illustrate the use of the variance profile for estimating the long memory parameter in climatological and financial time series and for assessing structural change.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/30378/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 30378.

as in new window
Length:
Date of creation: 19 Apr 2011
Date of revision:
Handle: RePEc:pra:mprapa:30378

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: Predictability; Interpolation; Non-parametric spectral estimation; Long memory.;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Alessandra Luati & Tommaso Proietti, 2010. "Hyper-spherical and elliptical stochastic cycles," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(3), pages 169-181, 05.
  2. Kasahara, Yukio & Pourahmadi, Mohsen & Inoue, Akihiko, 2009. "Duals of random vectors and processes with applications to prediction problems with missing values," Statistics & Probability Letters, Elsevier, vol. 79(14), pages 1637-1646, July.
  3. James H. Stock & Mark W. Watson, 2002. "Has the Business Cycle Changed and Why?," NBER Working Papers 9127, National Bureau of Economic Research, Inc.
  4. Francis X. Diebold & Lutz Kilian, 1997. "Measuring predictability: theory and macroeconomic applications," Working Papers 97-23, Federal Reserve Bank of Philadelphia.
  5. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  6. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
  7. Nidhan Choudhuri & Subhashis Ghosal & Anindya Roy, 2004. "Bayesian Estimation of the Spectral Density of a Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1050-1059, December.
  8. Hannan, E J & Terrell, R D & Tuckwell, N E, 1970. "The Seasonal Adjustment of Economic Time Series," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 11(1), pages 24-52, February.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Tommaso Proietti & Alessandra Luati, 2013. "The Exponential Model for the Spectrum of a Time Series: Extensions and Applications," CEIS Research Paper 272, Tor Vergata University, CEIS, revised 19 Apr 2013.
  2. Tommaso Proietti & Alessandra Luati, 2013. "The Generalised Autocovariance Function," CEIS Research Paper 276, Tor Vergata University, CEIS, revised 30 Apr 2013.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:30378. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.