Advanced Search
MyIDEAS: Login

Hyper-spherical and Elliptical Stochastic Cycles

Contents:

Author Info

  • Luati, Alessandra
  • Proietti, Tommaso

Abstract

A univariate first order stochastic cycle can be represented as an element of a bivariate first order vector autoregressive process, or VAR(1), where the transition matrix is associated with a Givens rotation. From the geometrical viewpoint, the kernel of the cyclical dynamics is described by a clockwise rotation along a circle in the plane. The reduced form of the cycle is either ARMA(2,1), with complex roots, or AR(1), when the rotation angle equals 2k\pi or (2k + 1)\pi; k = 0; 1;... This paper generalizes this representation in two directions. According to the first, the cyclical dynamics originate from the motion of a point along an ellipse. The reduced form is also ARMA(2,1), but the model can account for certain types of asymmetries. The second deals with the multivariate case: the cyclical dynamics result from the projection along one of the coordinate axis of a point moving in Rn along an hyper-sphere. This is described by a VAR(1) process whose transition matrix is obtained by a sequence of n-dimensional Givens rotations. The reduced form of an element of the system is shown to be ARMA(n, n - 1). The properties of the resulting models are analyzed in the frequency domain, and we show that this generalization can account for a multimodal spectral density. The illustrations show that the proposed generalizations can be fitted successfully to some well known case studies of the econometric and time series literature. For instance, the elliptical model provides a parsimonious but effective representation of the mink-muskrat interaction. The hyperspherical model provides an interesting re-interpretation of the cycle in US Gross Domestic Product quarterly growth and the cycle in the Fortaleza rainfall series.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/15169/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 15169.

as in new window
Length:
Date of creation: 11 May 2009
Date of revision:
Handle: RePEc:pra:mprapa:15169

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: State space models; Predator-Prey Interaction; Givens Rotations.;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. James C. Morley & Charles R. Nelson & Eric Zivot, 2003. "Why Are the Beveridge-Nelson and Unobserved-Components Decompositions of GDP So Different?," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 235-243, May.
  2. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543.
  3. Zellner, Arnold & Palm, Franz, 1974. "Time series analysis and simultaneous equation econometric models," Journal of Econometrics, Elsevier, vol. 2(1), pages 17-54, May.
  4. Harvey, A.C. & Trimbur, T.M., 2001. "General Model-based Filters for Extracting Cycles and Trends in Economic Time Series," Cambridge Working Papers in Economics 0113, Faculty of Economics, University of Cambridge.
  5. James C. Morley & Charles Nelson & Eric Zivot, 2000. "Why Are Beveridge-Nelson and Unobserved-Component Decompositions of GDP So Different?," Discussion Papers in Economics at the University of Washington 0013, Department of Economics at the University of Washington.
  6. Harvey, A C, 1985. "Trends and Cycles in Macroeconomic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 3(3), pages 216-27, June.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Tommaso Proietti & Alessandra Luati, 2013. "The Exponential Model for the Spectrum of a Time Series: Extensions and Applications," CEIS Research Paper 272, Tor Vergata University, CEIS, revised 19 Apr 2013.
  2. Giacomo Sbrana & Andrea Silvestrini, 2012. "Temporal aggregation of cyclical models with business cycle applications," Statistical Methods and Applications, Springer, vol. 21(1), pages 93-107, March.
  3. Alessandra Luati & Tommaso Proietti & Marco Reale, 2012. "The Variance Profile," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 607-621, June.
  4. Tommaso, Proietti & Alessandra, Luati, 2012. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," MPRA Paper 39600, University Library of Munich, Germany.
  5. Tommaso Proietti & Alessandra Luati, 2013. "Generalised Linear Spectral Models," CEIS Research Paper 290, Tor Vergata University, CEIS, revised 03 Oct 2013.
  6. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2013. "On the Stratonovich – Kalman - Bucy filtering algorithm application for accurate characterization of financial time series with use of state-space model by central banks," MPRA Paper 50235, University Library of Munich, Germany.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:15169. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.