IDEAS home Printed from https://ideas.repec.org/p/isu/genres/13075.html
   My bibliography  Save this paper

Separation and Volatility of Locational Marginal Prices in Restructured Wholesale Power Markets

Author

Listed:
  • Li, Hongyan
  • Sun, Junjie
  • Tesfatsion, Leigh S.

Abstract

This study uses an agent-based test bed ("AMES") to investigate separation and volatility of locational marginal prices (LMPs) in an ISO-managed restructured wholesale power market operating over an AC transmission grid. Particular attention is focused on the dynamic and cross-sectional response of LMPs to systematic changes in demand-bid price sensitivities and supply-offer price cap levels under varied learning specifications for the generation companies. Also explored is the extent to which the supply offers of the marginal (price-determining) generation companies induce correlations among neighboring LMPs. Related work can be accessed at: http://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm

Suggested Citation

  • Li, Hongyan & Sun, Junjie & Tesfatsion, Leigh S., 2009. "Separation and Volatility of Locational Marginal Prices in Restructured Wholesale Power Markets," Staff General Research Papers Archive 13075, Iowa State University, Department of Economics.
  • Handle: RePEc:isu:genres:13075
    as

    Download full text from publisher

    File URL: http://www2.econ.iastate.edu/papers/p1452-2009-06-09.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tesfatsion, Leigh, 2009. "Auction Basics for Wholesale Power Markets: Objectives and Pricing Rules," Staff General Research Papers Archive 13074, Iowa State University, Department of Economics.
    2. Junjie Sun & Leigh Tesfatsion, 2007. "Dynamic Testing of Wholesale Power Market Designs: An Open-Source Agent-Based Framework," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 291-327, October.
    3. Paul L. Joskow, 2006. "Markets for Power in the United States: An Interim Assessment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 1-36.
    4. Li, Hongyan & Sun, Junjie & Tesfatsion, Leigh, 2008. "Dynamic LMP response under alternative price-cap and price-sensitive demand scenarios," ISU General Staff Papers 200801010800001034, Iowa State University, Department of Economics.
    5. James Nicolaisen & Valentin Petrov & Leigh Tesfatsion, 2000. "Market Power and Efficiency in a Computational Electricity Market with Discriminatory Double-Auction Pricing," Computational Economics 0004005, University Library of Munich, Germany.
    6. Somani, Abhishek & Tesfatsion, Leigh, 2008. "An Agent-Based Test Bed Study of Wholesale Power Market Performance Measures," ISU General Staff Papers 200801010800001392, Iowa State University, Department of Economics.
    7. Liu, Haifeng & Tesfatsion, Leigh S. & Chowdhury, A.A., 2009. "Derivation of Locational Marginal Prices for Restructured Wholesale Power Markets," Staff General Research Papers Archive 13068, Iowa State University, Department of Economics.
    8. Li, Hongyan & Tesfatsion, Leigh S., 2009. "Capacity Withholding in Restructured Wholesale Power Markets: An Agent-Based Test Bed Study," Staff General Research Papers Archive 13070, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hongyan & Tesfatsion, Leigh, 2012. "Co-learning patterns as emergent market phenomena: An electricity market illustration," Journal of Economic Behavior & Organization, Elsevier, vol. 82(2), pages 395-419.
    2. Albert Banal-Estañol & Augusto Rupérez Micola, 2010. "Are Agent-based Simulations Robust? The Wholesale Electricity Trading Case," Working Papers 443, Barcelona School of Economics.
    3. Karhinen, Santtu & Huuki, Hannu, 2020. "How are the long distances between renewable energy sources and load centres reflected in locational marginal prices?," Energy, Elsevier, vol. 210(C).
    4. Young, David & Poletti, Stephen & Browne, Oliver, 2014. "Can agent-based models forecast spot prices in electricity markets? Evidence from the New Zealand electricity market," Energy Economics, Elsevier, vol. 45(C), pages 419-434.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Somani, Abhishek, 2012. "Financial risk management and market performance in restructured electric power markets: Theoretical and agent-based test bed studies," ISU General Staff Papers 201201010800003479, Iowa State University, Department of Economics.
    2. Li, Hongyan & Tesfatsion, Leigh, 2012. "Co-learning patterns as emergent market phenomena: An electricity market illustration," Journal of Economic Behavior & Organization, Elsevier, vol. 82(2), pages 395-419.
    3. Albert Banal-Estañol & Augusto Rupérez-Micola, 2010. "Are agent-based simulations robust? The wholesale electricity trading case," Economics Working Papers 1214, Department of Economics and Business, Universitat Pompeu Fabra.
    4. Eric Guerci & Stefano Ivaldi & Silvano Cincotti, 2008. "Learning Agents in an Artificial Power Exchange: Tacit Collusion, Market Power and Efficiency of Two Double-auction Mechanisms," Computational Economics, Springer;Society for Computational Economics, vol. 32(1), pages 73-98, September.
    5. Tesfatsion, Leigh, 2022. "Economics of Grid-Supported Electric Power Markets: A Fundamental Reconsideration," ISU General Staff Papers 202209141325510000, Iowa State University, Department of Economics.
    6. Young, David & Poletti, Stephen & Browne, Oliver, 2014. "Can agent-based models forecast spot prices in electricity markets? Evidence from the New Zealand electricity market," Energy Economics, Elsevier, vol. 45(C), pages 419-434.
    7. Ketter, Wolfgang & Collins, John & Reddy, Prashant, 2013. "Power TAC: A competitive economic simulation of the smart grid," Energy Economics, Elsevier, vol. 39(C), pages 262-270.
    8. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    9. Gaivoronskaia, E. & Tsyplakov, A., 2018. "Using a Modified Erev-Roth Algorithm in an Agent-Based Electricity Market Model," Journal of the New Economic Association, New Economic Association, vol. 39(3), pages 55-83.
    10. Vespucci, Maria Teresa & Innorta, Mario & Cervigni, Guido, 2013. "A Mixed Integer Linear Programming model of a zonal electricity market with a dominant producer," Energy Economics, Elsevier, vol. 35(C), pages 35-41.
    11. Rahimiyan, Morteza & Rajabi Mashhadi, Habib, 2010. "Evaluating the efficiency of divestiture policy in promoting competitiveness using an analytical method and agent-based computational economics," Energy Policy, Elsevier, vol. 38(3), pages 1588-1595, March.
    12. Dina A. Zaki & Mohamed Hamdy, 2022. "A Review of Electricity Tariffs and Enabling Solutions for Optimal Energy Management," Energies, MDPI, vol. 15(22), pages 1-17, November.
    13. Junjie Sun & Leigh Tesfatsion, 2007. "Dynamic Testing of Wholesale Power Market Designs: An Open-Source Agent-Based Framework," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 291-327, October.
    14. Battula, Swathi & Tesfatsion, Leigh & McDermott, Thomas E., 2020. "An ERCOT test system for market design studies," Applied Energy, Elsevier, vol. 275(C).
    15. Albert Banal-Estañol & Augusto Rupérez Micola, 2009. "Composition of Electricity Generation Portfolios, Pivotal Dynamics, and Market Prices," Management Science, INFORMS, vol. 55(11), pages 1813-1831, November.
    16. E. J. Anderson & T. D. H. Cau, 2009. "Modeling Implicit Collusion Using Coevolution," Operations Research, INFORMS, vol. 57(2), pages 439-455, April.
    17. repec:hal:spmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    18. Banal-Estañol, Albert & Rupérez Micola, Augusto, 2011. "Behavioural simulations in spot electricity markets," European Journal of Operational Research, Elsevier, vol. 214(1), pages 147-159, October.
    19. repec:hal:spmain:info:hdl:2441/5qr7f0k4sk8rbq4do5u6v70rm0 is not listed on IDEAS
    20. Block, C. & Collins, J. & Ketter, W. & Weinhardt, C., 2009. "A Multi-Agent Energy Trading Competition," ERIM Report Series Research in Management ERS-2009-054-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    21. Weidlich, Anke & Veit, Daniel, 2008. "A critical survey of agent-based wholesale electricity market models," Energy Economics, Elsevier, vol. 30(4), pages 1728-1759, July.
    22. Weidlich Anke & Veit Daniel, 2008. "Agent-Based Simulations for Electricity Market Regulation Advice: Procedures and an Example," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 228(2-3), pages 149-172, April.

    More about this item

    Keywords

    Restructured wholesale power markets; multi-agent learning; demand-bid price sensitivity; AMES Wholesale Power Market Test Bed; agent-based modeling; locational marginal prices (LMPs); LMP separation; LMP volatility; supply-offer price caps;
    All these keywords.

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • D4 - Microeconomics - - Market Structure, Pricing, and Design
    • D6 - Microeconomics - - Welfare Economics
    • L1 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance
    • L3 - Industrial Organization - - Nonprofit Organizations and Public Enterprise
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:isu:genres:13075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Curtis Balmer (email available below). General contact details of provider: https://edirc.repec.org/data/deiasus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.