IDEAS home Printed from https://ideas.repec.org/a/nea/journl/y2018i39p55-83.html
   My bibliography  Save this article

Using a Modified Erev-Roth Algorithm in an Agent-Based Electricity Market Model

Author

Listed:
  • Gaivoronskaia, E.

    (Novosibirsk State University, Novosibirsk, Russia)

  • Tsyplakov, A.

    (Novosibirsk State University, Novosibirsk, Russia
    Institute of Economics and Industrial Engineering of SB RAS, Novosibirsk, Russia)

Abstract

One of the important tools for the analysis and prediction of operation of electricity markets are agent-based models, which simulate the behavior of decentralized agents (for example, producers and buyers), each with its own objectives and means. In these models learning of agents submitting price bids to a wholesale market plays an important role. In the process of repeated interaction an agent adapts to the environment and to the behavior of other agents, learns to predict the results of its own actions. The paper presents a modification of the classical Erev-Roth reinforcement learning algorithm which takes into account the distance between alternatives. The proposed modified algorithm is used to represent agents' learning in an agent-based model of the Russian wholesale electricity market (Siberian pricing zone) within the bounds of the day-ahead market. It is shown that it has some significant advantages as compared to the original algorithm. In particular, the algorithm is naturally interpretable, is robust to the choice of discretization step, is invariant to a shift in payoffs scale. On the whole, the algorithm is more flexible than the original one. When the modified algorithm is used, one observes good coherence between the dynamics of model price and the observable dynamics of the price in the market.

Suggested Citation

  • Gaivoronskaia, E. & Tsyplakov, A., 2018. "Using a Modified Erev-Roth Algorithm in an Agent-Based Electricity Market Model," Journal of the New Economic Association, New Economic Association, vol. 39(3), pages 55-83.
  • Handle: RePEc:nea:journl:y:2018:i:39:p:55-83
    as

    Download full text from publisher

    File URL: http://www.econorus.org/repec/journl/2018-39-55-83r.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Junjie Sun & Leigh Tesfatsion, 2007. "Dynamic Testing of Wholesale Power Market Designs: An Open-Source Agent-Based Framework," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 291-327, October.
    2. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    3. Vasin, A. & Daylova, E., 2013. "Analysis of the Short-Term Efficiency of Mechanisms of the Wholesale Electricity Market," Journal of the New Economic Association, New Economic Association, vol. 18(2), pages 35-60.
    4. Paul J. J. Welfens & Christian Richter & Holger C. Wolf, 2019. "Transitions," International Economics and Economic Policy, Springer, vol. 16(4), pages 563-564, October.
    5. Koesrindartoto, Deddy P., 2002. "Discrete Double Auctions with Artificial Adaptive Agents: A Case Study of an Electricity Market Using a Double Auction Simulator," Staff General Research Papers Archive 10017, Iowa State University, Department of Economics.
    6. James Nicolaisen & Valentin Petrov & Leigh Tesfatsion, 2000. "Market Power and Efficiency in a Computational Electricity Market with Discriminatory Double-Auction Pricing," Computational Economics 0004005, University Library of Munich, Germany.
    7. Li, Hongyan & Tesfatsion, Leigh S., 2009. "The AMES Wholesale Power Market Test Bed: A Computational Laboratory for Research, Teaching, and Training," Staff General Research Papers Archive 13073, Iowa State University, Department of Economics.
    8. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    9. Eric Guerci & Mohammad Ali Rastegar & Silvano Cincotti, 2010. "Agent-based modeling and simulation of competitive wholesale electricity markets," Post-Print halshs-00871063, HAL.
    10. Weidlich, Anke & Veit, Daniel, 2008. "A critical survey of agent-based wholesale electricity market models," Energy Economics, Elsevier, vol. 30(4), pages 1728-1759, July.
    11. Bower, John & Bunn, Derek, 2001. "Experimental analysis of the efficiency of uniform-price versus discriminatory auctions in the England and Wales electricity market," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 561-592, March.
    12. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo & Möst, Dominik, 2007. "Agent-based simulation of electricity markets: a literature review," Working Papers "Sustainability and Innovation" S5/2007, Fraunhofer Institute for Systems and Innovation Research (ISI).
    13. Derek W. Bunn and Fernando Oliveira, 2001. "An Application of Agent-based Simulation to the New Electricity Trading Arrangements of England and Wales," Computing in Economics and Finance 2001 93, Society for Computational Economics.
    14. Veit, Daniel J. & Weidlich, Anke & Krafft, Jacob A., 2009. "An agent-based analysis of the German electricity market with transmission capacity constraints," Energy Policy, Elsevier, vol. 37(10), pages 4132-4144, October.
    15. Micola, Augusto Rupérez & Banal-Estañol, Albert & Bunn, Derek W., 2008. "Incentives and coordination in vertically related energy markets," Journal of Economic Behavior & Organization, Elsevier, vol. 67(2), pages 381-393, August.
    16. John Bower & Derek W. Bunn, 2000. "Model-Based Comparisons of Pool and Bilateral Markets for Electricity," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-29.
    17. Holland, John H & Miller, John H, 1991. "Artificial Adaptive Agents in Economic Theory," American Economic Review, American Economic Association, vol. 81(2), pages 365-371, May.
    18. Daniel Kahneman, 2003. "Maps of Bounded Rationality: Psychology for Behavioral Economics," American Economic Review, American Economic Association, vol. 93(5), pages 1449-1475, December.
    19. Ayzenberg, N. & Kiseleva, N. & Zorkaltsev, V., 2013. "Models of Imperfect Competition in Analysis of Siberian Electricity Market," Journal of the New Economic Association, New Economic Association, vol. 18(2), pages 62-88.
    20. Nicolaisen, James & Smith, Matthew & Petrov, Valentin & Tesfatsion, Leigh, 2000. "Concentration and Capacity Effects on Electricity Market Power," Staff General Research Papers Archive 1847, Iowa State University, Department of Economics.
    21. Rashidova E.A., 2017. "Agent-based modeling of wholesale electricity market," World of economics and management / Vestnik NSU. Series: Social and Economics Sciences, Socionet, vol. 17(1), pages 70-85.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petrov, Mikhail & Serkov, Leonid & Kozhov, Konstantin, 2021. "Analysis of the spatial features of regional power consumption in the Russian Federation," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 61, pages 5-27.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albert Banal-Estañol & Augusto Rupérez-Micola, 2010. "Are agent-based simulations robust? The wholesale electricity trading case," Economics Working Papers 1214, Department of Economics and Business, Universitat Pompeu Fabra.
    2. Weidlich, Anke & Veit, Daniel, 2008. "A critical survey of agent-based wholesale electricity market models," Energy Economics, Elsevier, vol. 30(4), pages 1728-1759, July.
    3. Rashidova E.A., 2017. "Agent-based modeling of wholesale electricity market," World of economics and management / Vestnik NSU. Series: Social and Economics Sciences, Socionet, vol. 17(1), pages 70-85.
    4. Banal-Estañol, Albert & Rupérez Micola, Augusto, 2011. "Behavioural simulations in spot electricity markets," European Journal of Operational Research, Elsevier, vol. 214(1), pages 147-159, October.
    5. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo & Möst, Dominik, 2007. "Agent-based simulation of electricity markets: a literature review," Working Papers "Sustainability and Innovation" S5/2007, Fraunhofer Institute for Systems and Innovation Research (ISI).
    6. Young, David & Poletti, Stephen & Browne, Oliver, 2014. "Can agent-based models forecast spot prices in electricity markets? Evidence from the New Zealand electricity market," Energy Economics, Elsevier, vol. 45(C), pages 419-434.
    7. Weidlich Anke & Veit Daniel, 2008. "Agent-Based Simulations for Electricity Market Regulation Advice: Procedures and an Example," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 228(2-3), pages 149-172, April.
    8. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    9. Sarıca, Kemal & Kumbaroğlu, Gürkan & Or, Ilhan, 2012. "Modeling and analysis of a decentralized electricity market: An integrated simulation/optimization approach," Energy, Elsevier, vol. 44(1), pages 830-852.
    10. Esmaeili Aliabadi, Danial & Kaya, Murat & Sahin, Guvenc, 2017. "Competition, risk and learning in electricity markets: An agent-based simulation study," Applied Energy, Elsevier, vol. 195(C), pages 1000-1011.
    11. Rosen, Christiane & Madlener, Reinhard, 2012. "Auction Design for Local Reserve Energy Markets," FCN Working Papers 7/2012, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Mar 2013.
    12. repec:hal:spmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    13. repec:hal:spmain:info:hdl:2441/5qr7f0k4sk8rbq4do5u6v70rm0 is not listed on IDEAS
    14. Li, Hongyan & Tesfatsion, Leigh, 2012. "Co-learning patterns as emergent market phenomena: An electricity market illustration," Journal of Economic Behavior & Organization, Elsevier, vol. 82(2), pages 395-419.
    15. Vijayanarasimha Hindupur Pakka & Richard Mark Rylatt, 2016. "Design and Analysis of Electrical Distribution Networks and Balancing Markets in the UK: A New Framework with Applications," Energies, MDPI, vol. 9(2), pages 1-20, February.
    16. repec:hal:spmain:info:hdl:2441/53r60a8s3kup1vc9l564igg8g is not listed on IDEAS
    17. Lin-Ju Chen & Lei Zhu & Ying Fan & Sheng-Hua Cai, 2013. "Long-Term Impacts of Carbon Tax and Feed-in Tariff Policies on China's Generating Portfolio and Carbon Emissions: A Multi-Agent-Based Analysis," Energy & Environment, , vol. 24(7-8), pages 1271-1293, December.
    18. Anna Kowalska-Pyzalska & Katarzyna Maciejowska & Katarzyna Sznajd-Weron & Rafal Weron, 2013. "Going green: Agent-based modeling of the diffusion of dynamic electricity tariffs," HSC Research Reports HSC/13/05, Hugo Steinhaus Center, Wroclaw University of Technology.
    19. Eric Guerci & Stefano Ivaldi & Silvano Cincotti, 2008. "Learning Agents in an Artificial Power Exchange: Tacit Collusion, Market Power and Efficiency of Two Double-auction Mechanisms," Computational Economics, Springer;Society for Computational Economics, vol. 32(1), pages 73-98, September.
    20. Atakelty Hailu & Sophie Thoyer, 2010. "What Format for Multi-Unit Multiple-Bid Auctions?," Computational Economics, Springer;Society for Computational Economics, vol. 35(3), pages 189-209, March.
    21. Sophie Thoyer & Atakelty Hailu, 2005. "Multi-Unit Auctions to Allocate Water Scarcity Simulating bidding behaviour with agent based models," Working Papers 05-01, LAMETA, Universtiy of Montpellier, revised Jan 2005.
    22. Atakelty Hailu & Sophie Thoyer, 2007. "Designing Multi‐unit Multiple Bid Auctions: An Agent‐based Computational Model of Uniform, Discriminatory and Generalised Vickrey Auctions," The Economic Record, The Economic Society of Australia, vol. 83(s1), pages 57-72, September.
    23. Leigh Tesfatsion, 2002. "Agent-Based Computational Economics," Computational Economics 0203001, University Library of Munich, Germany, revised 15 Aug 2002.

    More about this item

    Keywords

    agent-based models; wholesale electricity market; day-ahead market; learning algorithms; Erev-Roth algorithm;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D43 - Microeconomics - - Market Structure, Pricing, and Design - - - Oligopoly and Other Forms of Market Imperfection
    • D44 - Microeconomics - - Market Structure, Pricing, and Design - - - Auctions
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • L1 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nea:journl:y:2018:i:39:p:55-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alexey Tcharykov (email available below). General contact details of provider: https://edirc.repec.org/data/nearuea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.