IDEAS home Printed from https://ideas.repec.org/p/ipg/wpaper/2018-002.html
   My bibliography  Save this paper

The Aggregation Dilemma in Climate Change Policy Evaluation

Author

Listed:
  • Ingmar Schumacher

Abstract

We show that a policy maker who ignores regional data and instead relies on aggregated integrated assessment models is likely underestimating the carbon price and thus the required climate policy. Based on a simple theoretical model we give conditions under which the Aggregation Dilemma is expected to play a role in climate change cost-benefit analysis. We then study the importance of the Aggregation Dilemma with the integrated assessment model RICE (Nordhaus and Boyer 2000). Aggregating all regions of the RICE-99 model into one region yields a 40% lower social cost of carbon than the RICE model itself predicts. Based on extrapolating the results a country-level integrated assessment model would give a more than eight times higher social cost of carbon compared to a fully aggregated model. We suggest that these tentative results require researchers to re-think the aggregation level used in integrated assessment models and to develop models at much lower levels of aggregation than currently available.

Suggested Citation

  • Ingmar Schumacher, 2018. "The Aggregation Dilemma in Climate Change Policy Evaluation," Working Papers 2018-002, Department of Research, Ipag Business School.
  • Handle: RePEc:ipg:wpaper:2018-002
    as

    Download full text from publisher

    File URL: https://faculty-research.ipag.edu/wp-content/uploads/recherche/WP/IPAG_WP_2018_002.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Valentina Bosetti & Carlo Carraro & Marzio Galeotti & Emanuele Massetti & Massimo Tavoni, 2006. "WITCH. A World Induced Technical Change Hybrid Model," Working Papers 2006_46, Department of Economics, University of Venice "Ca' Foscari".
    2. W. Botzen & Jeroen Bergh, 2014. "Specifications of Social Welfare in Economic Studies of Climate Policy: Overview of Criteria and Related Policy Insights," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(1), pages 1-33, May.
    3. Humberto Llavador & John E. Roemer & Joaquim Silvestre, 2011. "Sustainability in the Presence of Global Warming: Theory and Empirics," Human Development Research Papers (2009 to present) HDRP-2011-05, Human Development Report Office (HDRO), United Nations Development Programme (UNDP).
    4. Llavador, Humberto & Roemer, John E. & Silvestre, Joaquim, 2011. "“A dynamic analysis of human welfare in a warming planet”," Journal of Public Economics, Elsevier, vol. 95(11), pages 1607-1620.
    5. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    6. Llavador, Humberto & Roemer, John E. & Silvestre, Joaquim, 2010. "Intergenerational justice when future worlds are uncertain," Journal of Mathematical Economics, Elsevier, vol. 46(5), pages 728-761, September.
    7. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    8. Stephen C. Peck & Thomas J. Teisberg, 1999. "CO2 Emissions Control Agreements: Incentives for Regional Participation," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 367-390.
    9. Samuel Fankhauser & Richard Tol & DAVID Pearce, 1997. "The Aggregation of Climate Change Damages: a Welfare Theoretic Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 10(3), pages 249-266, October.
    10. Nordhaus, William D, 1993. "Optimal Greenhouse-Gas Reductions and Tax Policy in the "Dice" Model," American Economic Review, American Economic Association, vol. 83(2), pages 313-317, May.
    11. Reyer Gerlagh, 2006. "ITC in a Global Growth-Climate Model with CCS: The Value of Induced Technical Change for Climate Stabilization," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 223-240.
    12. Edenhofer, Ottmar & Bauer, Nico & Kriegler, Elmar, 2005. "The impact of technological change on climate protection and welfare: Insights from the model MIND," Ecological Economics, Elsevier, vol. 54(2-3), pages 277-292, August.
    13. Valentina Bosetti, Carlo Carraro and Marzio Galeotti, 2006. "The Dynamics of Carbon and Energy Intensity in a Model of Endogenous Technical Change," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 191-206.
    14. Elizabeth Stanton, 2011. "Negishi welfare weights in integrated assessment models: the mathematics of global inequality," Climatic Change, Springer, vol. 107(3), pages 417-432, August.
    15. Martin L. Weitzman, 2014. "Fat Tails and the Social Cost of Carbon," American Economic Review, American Economic Association, vol. 104(5), pages 544-546, May.
    16. Kurosawa, Atsushi, 2004. "Carbon concentration target and technological choice," Energy Economics, Elsevier, vol. 26(4), pages 675-684, July.
    17. Humberto Llavador & John E. Roemer & Joaquim Silvestre, 2013. "Should we sustain? And if so, sustain what? Consumption or the quality of life?," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 30, pages 639-665, Edward Elgar Publishing.
    18. d'Arge, Ralph C & Schulze, William D & Brookshire, David S, 1982. "Carbon Dioxide and Intergenerational Choice," American Economic Review, American Economic Association, vol. 72(2), pages 251-256, May.
    19. John Hassler & Per Krusell, 2012. "Economics And Climate Change: Integrated Assessment In A Multi-Region World," Journal of the European Economic Association, European Economic Association, vol. 10(5), pages 974-1000, October.
    20. Popp, David, 2006. "ENTICE-BR: The effects of backstop technology R&D on climate policy models," Energy Economics, Elsevier, vol. 28(2), pages 188-222, March.
    21. Nordhaus, William D & Yang, Zili, 1996. "A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies," American Economic Review, American Economic Association, vol. 86(4), pages 741-765, September.
    22. Alan P. Kirman, 1992. "Whom or What Does the Representative Individual Represent?," Journal of Economic Perspectives, American Economic Association, vol. 6(2), pages 117-136, Spring.
    23. Tol, Richard S. J., 2001. "Equitable cost-benefit analysis of climate change policies," Ecological Economics, Elsevier, vol. 36(1), pages 71-85, January.
    24. Ingmar Schumacher, 2014. "The Aggregation Dilemma," Working Papers 2014-224, Department of Research, Ipag Business School.
    25. Valentina Bosetti, Carlo Carraro, Marzio Galeotti, Emanuele Massetti, Massimo Tavoni, 2006. "A World induced Technical Change Hybrid Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 13-38.
    26. William D. Nordhaus, 2007. "A Review of the Stern Review on the Economics of Climate Change," Journal of Economic Literature, American Economic Association, vol. 45(3), pages 686-702, September.
    27. Martin L. Weitzman, 2007. "A Review of the Stern Review on the Economics of Climate Change," Journal of Economic Literature, American Economic Association, vol. 45(3), pages 703-724, September.
    28. Toshihiko Masui, Tatsuya Hanaoka, Saeko Hikita, and Mikiko Kainuma, 2006. "Assessment of CO2 Reductions and Economic Impacts Considering Energy-Saving Investments," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 175-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stern, Nicholas, 2021. "A time for action on climate change and a time for change in economics," LSE Research Online Documents on Economics 112802, London School of Economics and Political Science, LSE Library.
    2. repec:ipg:wpaper:2014-484 is not listed on IDEAS
    3. Ingmar Schumacher, 2019. "Climate Policy Must Favour Mitigation Over Adaptation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(4), pages 1519-1531, December.
    4. repec:ipg:wpaper:2014-479 is not listed on IDEAS
    5. repec:ipg:wpaper:2014-467 is not listed on IDEAS
    6. repec:ipg:wpaper:2014-482 is not listed on IDEAS
    7. Merrick, James H. & Weyant, John P., 2019. "On choosing the resolution of normative models," European Journal of Operational Research, Elsevier, vol. 279(2), pages 511-523.
    8. Stern, Nicholas, 2021. "A time for action on climate change and a time for change in economics," LSE Research Online Documents on Economics 112808, London School of Economics and Political Science, LSE Library.
    9. repec:ipg:wpaper:2014-496 is not listed on IDEAS
    10. repec:ipg:wpaper:2014-454 is not listed on IDEAS
    11. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.t., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," LSE Research Online Documents on Economics 114941, London School of Economics and Political Science, LSE Library.
    12. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ingmar Schumacher, 2014. "The Aggregation Dilemma," Working Papers 2014-224, Department of Research, Ipag Business School.
    2. Elizabeth Stanton, 2011. "Negishi welfare weights in integrated assessment models: the mathematics of global inequality," Climatic Change, Springer, vol. 107(3), pages 417-432, August.
    3. Grimaud, André & Lafforgue, Gilles & Magné, Bertrand, 2007. "Innovation Markets in the Policy Appraisal of Climate Change Mitigation," IDEI Working Papers 481, Institut d'Économie Industrielle (IDEI), Toulouse.
    4. Bosetti, Valentina & Carraro, Carlo & De Cian, Enrica & Massetti, Emanuele & Tavoni, Massimo, 2013. "Incentives and stability of international climate coalitions: An integrated assessment," Energy Policy, Elsevier, vol. 55(C), pages 44-56.
    5. W. Botzen & Jeroen Bergh, 2014. "Specifications of Social Welfare in Economic Studies of Climate Policy: Overview of Criteria and Related Policy Insights," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(1), pages 1-33, May.
    6. Humberto Llavador & John E. Roemer & Joaquim Silvestre, 2013. "Should we sustain? And if so, sustain what? Consumption or the quality of life?," Chapters,in: Handbook on Energy and Climate Change, chapter 30, pages 639-665 Edward Elgar Publishing.
    7. GRIMAUD André & LAFFORGUE Gilles & MAGNE Bertrand, 2007. "Economic growth and Climate change in a decentralized Economy: A Theoretical and Empirical Approach," LERNA Working Papers 07.04.225, LERNA, University of Toulouse.
    8. Lessmann, Kai & Marschinski, Robert & Edenhofer, Ottmar, 2009. "The effects of tariffs on coalition formation in a dynamic global warming game," Economic Modelling, Elsevier, vol. 26(3), pages 641-649, May.
    9. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    10. Grimaud, André & Lafforgue, Gilles & Magné, Bertrand, 2011. "Climate change mitigation options and directed technical change: A decentralized equilibrium analysis," Resource and Energy Economics, Elsevier, vol. 33(4), pages 938-962.
    11. Yohe, Gary W. & Tol, Richard S. J. & Anthoff, David, 2009. "Discounting for Climate Change," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-22.
    12. Traeger, Christian, 2021. "ACE - Analytic Climate Economy," CEPR Discussion Papers 15968, C.E.P.R. Discussion Papers.
    13. Bosello, Francesco & Carraro, Carlo & De Cian, Enrica, 2013. "Adaptation can help mitigation: an integrated approach to post-2012 climate policy," Environment and Development Economics, Cambridge University Press, vol. 18(3), pages 270-290, June.
    14. Wei, Yi-Ming & Mi, Zhi-Fu & Huang, Zhimin, 2015. "Climate policy modeling: An online SCI-E and SSCI based literature review," Omega, Elsevier, vol. 57(PA), pages 70-84.
    15. Geir B. Asheim, 2017. "Sustainable growth," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 49(3), pages 825-848, December.
    16. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.t., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," LSE Research Online Documents on Economics 114941, London School of Economics and Political Science, LSE Library.
    17. Tol, Richard S.J., 2013. "Targets for global climate policy: An overview," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 911-928.
    18. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).
    19. Grimaud, André & Lafforgue, Gilles & Magné, Bertrand, 2008. "Decentralized Equilibrium Analysis in a Growth Model with Directed Technical Change and Climate Change Mitigation," IDEI Working Papers 537, Institut d'Économie Industrielle (IDEI), Toulouse.
    20. Catalano, Michele & Forni, Lorenzo & Pezzolla, Emilia, 2020. "Climate-change adaptation: The role of fiscal policy," Resource and Energy Economics, Elsevier, vol. 59(C).

    More about this item

    Keywords

    Aggregation Dilemma; aggregation; Integrated Assessment Models; climate policy;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ipg:wpaper:2018-002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ingmar Schumacher (email available below). General contact details of provider: https://edirc.repec.org/data/ipagpfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.