IDEAS home Printed from https://ideas.repec.org/p/ias/cpaper/02-wp306.html
   My bibliography  Save this paper

Cost of Agricultural Carbon Savings, The

Author

Listed:
  • Uwe A. Schneider

Abstract

Economic impacts of agricultural carbon sequestration involve direct costs of sequestration management adoption as well as a variety of indirect costs and benefits. The nature and significance of these impacts are discussed. Spatial and temporal heterogeneity in agriculture is identified as an influential factor. Techniques to estimate the cost of agricultural carbon sequestration are briefly reviewed and compared. Mathematically programming is used to simulate carbon sequestration in the U.S. agricultural sector and to provide experimental evidence of the existence and magnitude of economic impacts.

Suggested Citation

  • Uwe A. Schneider, 2002. "Cost of Agricultural Carbon Savings, The," Center for Agricultural and Rural Development (CARD) Publications 02-wp306, Center for Agricultural and Rural Development (CARD) at Iowa State University.
  • Handle: RePEc:ias:cpaper:02-wp306
    as

    Download full text from publisher

    File URL: https://www.card.iastate.edu/products/publications/pdf/02wp306.pdf
    File Function: Full Text
    Download Restriction: no

    File URL: https://www.card.iastate.edu/products/publications/synopsis/?p=371
    File Function: Online Synopsis
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S De Cara & P-A Jayet, 2000. "Emissions of greenhouse gases from agriculture: the heterogeneity of abatement costs in France," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 27(3), pages 281-303, September.
    2. Parks Peter J., 1995. "Explaining Irrational Land Use: Risk Aversion and Marginal Agricultural Land," Journal of Environmental Economics and Management, Elsevier, vol. 28(1), pages 34-47, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mireille Chiroleu-Assouline & Sébastien Roussel, 2010. "Contract Design to Sequester Carbon in Agricultural Soils," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00505137, HAL.
    2. Mireille Chiroleu-Assouline & Sebastien Roussel, 2014. "Payments for Carbon Sequestration in Agricultural Soils: Incentives for the Future and Rewards for the Past," CEEES Paper Series CE3S-01/14, European University at St. Petersburg, Department of Economics.
    3. Nava Haruvy & Sarit Shalhevet, 2006. "Regional Modelling for Optimal Allocation of Agricultural Crops Considering Environmental Impacts, Housing Value and Leisure Preferences," ERSA conference papers ersa06p822, European Regional Science Association.
    4. Hartell, Jason G., 2004. "Pricing Benefit Externalities of Soil Carbon Sequestration in Multifunctional Agriculture," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 36(2), pages 1-15, August.
    5. Stéphane De Cara & Martin Houzé & Pierre-Alain Jayet, 2004. "Greenhouse gas emissions from agriculture in the EU: A spatial assessment of sources and abatement costs," Working Papers 2004/04, INRA, Economie Publique.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert N. Stavins, 1998. "A Methodological Investigation of the Costs of Carbon Sequestration," Journal of Applied Economics, Taylor & Francis Journals, vol. 1(2), pages 231-277, November.
    2. Parisa Aghajanzadeh-Darzi & Pierre-Alain Jayet & Athanasios Petsakos, 2017. "Improvement of a Bio-Economic Mathematical Programming Model in the Case of On-Farm Source Inputs and Outputs," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 15(3), pages 489-508, September.
    3. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2011. "Farm-household investment behaviour and the CAP decoupling: Methodological issues in assessing policy impacts," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 127-145, January.
    4. Lengers, Bernd & Britz, Wolfgang, 2012. "The choice of emission indicators in environmental policy design: an analysis of GHG abatement in different dairy farms based on a bio-economic model approach," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 93(2).
    5. Chen, Jiandong & Cheng, Shulei & Song, Malin, 2018. "Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 748-761.
    6. Zack Dorner & Dean Hyslop, 2014. "Modelling Changing Rural Land Use in New Zealand 1997 to 2008 Using a Multinomial Logit Approach," Working Papers 14_12, Motu Economic and Public Policy Research.
    7. Amarante, Verónica & Arim, Rodrigo & Santamaría, Mauricio, 2005. "Los efectos de la reforma laboral de 2002 en el mercado laboral colombiano," Perfil de Coyuntura Económica, Universidad de Antioquia, CIE, November.
    8. de Cara, Stephane & Rozakis, Stelios, 2004. "Carbon sequestration through the planting of multi-annual energy crops: A dynamic and spatial assessment," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 5(1), pages 1-17, January.
    9. Elena G. Irwin & Andrew M. Isserman & Maureen Kilkenny & Mark D. Partridge, 2010. "A Century of Research on Rural Development and Regional Issues," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(2), pages 522-553.
    10. Ovando, Paola & Caparrós, Alejandro, 2009. "Land use and carbon mitigation in Europe: A survey of the potentials of different alternatives," Energy Policy, Elsevier, vol. 37(3), pages 992-1003, March.
    11. Pierre-Alain Jayet & Athanasios Petsakos & Raja Chakir & Anna Lungarska & Stéphane De Cara & Elvire Petel & Pierre Humblot & Caroline Godard & David Leclère & Pierre Cantelaube & Cyril Bourgeois & Mél, 2023. "The European agro-economic model AROPAj," Working Papers hal-04109872, HAL.
    12. Laure Bamière & Pierre‐Alain Jayet & Salomé Kahindo & Elsa Martin, 2021. "Carbon sequestration in French agricultural soils: A spatial economic evaluation," Agricultural Economics, International Association of Agricultural Economists, vol. 52(2), pages 301-316, March.
    13. Gomez-Limon, Jose A. & Arriaza, Manuel & Riesgo, Laura, 2003. "An MCDM analysis of agricultural risk aversion," European Journal of Operational Research, Elsevier, vol. 151(3), pages 569-585, December.
    14. Mireille Chiroleu-Assouline & Sébastien Roussel, 2010. "Contract Design to Sequester Carbon in Agricultural Soils," Documents de travail du Centre d'Economie de la Sorbonne 10060, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    15. Lungarska, Anna & Chakir, Raja, 2018. "Climate-induced Land Use Change in France: Impacts of Agricultural Adaptation and Climate Change Mitigation," Ecological Economics, Elsevier, vol. 147(C), pages 134-154.
    16. Lengers, Bernd & Britz, Wolfgang & Holm-Müller, Karin, 2013. "Trade-off of feasibility against accuracy and cost efficiency in choosing indicators for the abatement of GHG-emissions in dairy farming," Discussion Papers 162877, University of Bonn, Institute for Food and Resource Economics.
    17. Robert N. Stavins, 1999. "The Costs of Carbon Sequestration: A Revealed-Preference Approach," American Economic Review, American Economic Association, vol. 89(4), pages 994-1009, September.
    18. Towe, Charles A., 2011. "A Competing Risks Model of Land Use Change," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103725, Agricultural and Applied Economics Association.
    19. Eory, Vera, 2015. "Evaluating the use of marginal abatement cost curves applied to greenhouse gas abatement in agriculture," Working Papers 199777, Scotland's Rural College (formerly Scottish Agricultural College), Land Economy & Environment Research Group.
    20. Uwe A. Schneider & Bruce A. McCarl, 2003. "Measuring Abatement Potentials When Multiple Change Is Present: The Case Of Greenhouse Gas Mitigation In U.S. Agriculture And Forestry," Working Papers FNU-23, Research unit Sustainability and Global Change, Hamburg University, revised Apr 2002.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ias:cpaper:02-wp306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/caiasus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.