Advanced Search
MyIDEAS: Login to save this paper or follow this series

Computational Efficiency in Bayesian Model and Variable Selection

Contents:

Author Info

  • Eklund, Jana

    ()
    (Department of Business, Economics, Statistics and Informatics)

  • Karlsson, Sune

    ()
    (Department of Business, Economics, Statistics and Informatics)

Abstract

Large scale Bayesian model averaging and variable selection exercises present, despite the great increase in desktop computing power, considerable computational challenges. Due to the large scale it is impossible to evaluate all possible models and estimates of posterior probabilities are instead obtained from stochastic (MCMC) schemes designed to converge on the posterior distribution over the model space. While this frees us from the requirement of evaluating all possible models the computational effort is still substantial and efficient implementation is vital. Efficient implementation is concerned with two issues: the efficiency of the MCMC algorithm itself and efficient computation of the quantities needed to obtain a draw from the MCMC algorithm. We evaluate several different MCMC algorithms and find that relatively simple algorithms with local moves perform competitively except possibly when the data is highly collinear. For the second aspect, efficient computation within the sampler, we focus on the important case of linear models where the computations essentially reduce to least squares calculations. Least squares solvers that update a previous model estimate are appealing when the MCMC algorithm makes local moves and we find that the Cholesky update is both fast and accurate.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.oru.se/PageFiles/15374/wp2007-04.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Örebro University, School of Business in its series Working Papers with number 2007:4.

as in new window
Length: 41 pages
Date of creation: 10 Sep 2007
Date of revision:
Handle: RePEc:hhs:oruesi:2007_004

Contact details of provider:
Postal: Örebro University School of Business, SE - 701 82 ÖREBRO, Sweden
Phone: 019-30 30 00
Fax: 019-33 25 46
Web page: http://www.oru.se/Institutioner/Handelshogskolan-vid-Orebro-universitet/
More information through EDIRC

Related research

Keywords: Bayesian Model Averaging; Sweep operator; Cholesky decomposition; QR decomposition; Swendsen-Wang algorithm;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Carmen Fernández & Eduardo Ley & Mark F. J. Steel, . "Benchmark priors for Bayesian Model averaging," Working Papers 98-06, FEDEA.
  2. Sune Karlsson & Tor Jacobson, 2004. "Finding good predictors for inflation: a Bayesian model averaging approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(7), pages 479-496.
  3. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
  4. Gary Koop & Simon Potter, 2004. "Forecasting in dynamic factor models using Bayesian model averaging," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 550-565, December.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Jesús Crespo-Cuaresma & Gernot Doppelhofer & Martin Feldkircher, 2009. "The Determinants of Economic Growth in European Regions," CESifo Working Paper Series 2519, CESifo Group Munich.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:hhs:oruesi:2007_004. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.