Advanced Search
MyIDEAS: Login to save this paper or follow this series

Committee decisions: Optimality and Equilibrium

Contents:

Author Info

  • Jean-François Laslier

    (Department of Economics, Ecole Polytechnique - CNRS : UMR7176 - Polytechnique - X)

  • Jörgen Weibull

    (Department of Economics, Ecole Polytechnique - CNRS : UMR7176 - Polytechnique - X, SSE - Department of Economics - Stockholm School of Economics)

Abstract

We consider a group or committee that faces a binary decision under uncertainty. Each member holds some private information. Members agree which decision should be taken in each state of nature, had this been known, but they may attach different values to the two types of mistake that may occur. Most voting rules have a plethora of uninformative equilibria, and informative voting may be incompatible with equilibrium. We analyze an anonymous randomized majority rule that has a unique equilibrium. This equilibrium is strict, votes are informative, and the equilibrium implements the optimal decision with probability one in the limit as the committee size goes to infinity. We show that this also holds for the usual majority rule under certain perturbations of the behavioral assumptions: (i) a slight preference for voting according to one's conviction, and (ii) transparency and a slight preference for esteem. We also show that a slight probability for voting mistakes strengthens the incentive for informative voting.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hal.archives-ouvertes.fr/docs/00/35/46/98/PDF/2008-24.pdf
Download Restriction: no

Bibliographic Info

Paper provided by HAL in its series Working Papers with number halshs-00121741.

as in new window
Length:
Date of creation: Sep 2008
Date of revision:
Handle: RePEc:hal:wpaper:halshs-00121741

Note: View the original document on HAL open archive server: http://hal.archives-ouvertes.fr/halshs-00121741/en/
Contact details of provider:
Web page: http://hal.archives-ouvertes.fr/

Related research

Keywords: Voting; Condorcet; committee; judgement aggregation.;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Feddersen, Timothy J & Pesendorfer, Wolfgang, 1996. "The Swing Voter's Curse," American Economic Review, American Economic Association, vol. 86(3), pages 408-24, June.
  2. Myerson, Roger B., 1998. "Extended Poisson Games and the Condorcet Jury Theorem," Games and Economic Behavior, Elsevier, vol. 25(1), pages 111-131, October.
  3. Job Swank & Otto H. Swank & Bauke Visser, 2008. "How Committees of Experts Interact with the Outside World: Some Theory, and Evidence from the FOMC," Journal of the European Economic Association, MIT Press, vol. 6(2-3), pages 478-486, 04-05.
  4. Eliaz, Kfir, 2002. "Fault Tolerant Implementation," Review of Economic Studies, Wiley Blackwell, vol. 69(3), pages 589-610, July.
  5. Kfir Eliaz, 2002. "Fault Tolerant Implementation," Review of Economic Studies, Oxford University Press, vol. 69(3), pages 589-610.
  6. Hahn, Volker & Gersbach, Hans, 2001. "Should the Individual Voting Records of Central Bankers be Published?," Discussion Paper Series 1: Economic Studies 2001,02, Deutsche Bundesbank, Research Centre.
  7. Sah, Raaj Kumar & Stiglitz, Joseph E, 1988. "Committees, Hierarchies and Polyarchies," Economic Journal, Royal Economic Society, vol. 98(391), pages 451-70, June.
  8. Nicola Persico, 2004. "Committee Design with Endogenous Information," Review of Economic Studies, Oxford University Press, vol. 71(1), pages 165-191.
  9. Andrew McLennan, 2008. "Manipulation in Elections with Uncertain Preferences," Discussion Papers Series 360, School of Economics, University of Queensland, Australia.
  10. Gerardi, Dino & Yariv, Leeat, 2007. "Deliberative voting," Journal of Economic Theory, Elsevier, vol. 134(1), pages 317-338, May.
  11. Ruth Ben-Yashar & Igal Milchtaich, 2007. "First and second best voting rules in committees," Social Choice and Welfare, Springer, vol. 29(3), pages 453-486, October.
  12. Bauke Visser & Otto H. Swank, 2005. "On Committees of Experts," Tinbergen Institute Discussion Papers 05-028/1, Tinbergen Institute.
  13. Al-Najjar, Nabil I. & Smorodinsky, Rann, 2000. "Pivotal Players and the Characterization of Influence," Journal of Economic Theory, Elsevier, vol. 92(2), pages 318-342, June.
  14. Hahn, Volker, 2008. "Committees, sequential voting and transparency," Mathematical Social Sciences, Elsevier, vol. 56(3), pages 366-385, November.
  15. Nicola Persico, 2004. "Committee Design with Endogenous Information," Review of Economic Studies, Wiley Blackwell, vol. 71(1), pages 165-191, 01.
  16. Wit, Jorgen, 1998. "Rational Choice and the Condorcet Jury Theorem," Games and Economic Behavior, Elsevier, vol. 22(2), pages 364-376, February.
  17. Dixit, Avinash & Weibull, Jörgen, 2006. "Political Polarization," Working Paper Series in Economics and Finance 655, Stockholm School of Economics, revised 12 Apr 2007.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Bezalel Peleg & Shmuel Zamir, 2008. "Condorcet Jury Theorem: The Dependent Case," Discussion Paper Series dp477, The Center for the Study of Rationality, Hebrew University, Jerusalem.
  2. Bezalel Peleg & Shmuel Zamir, 2009. "On Bayesian-Nash Equilibria Satisfying the Condorcet Jury Theorem: The Dependent Case," Discussion Paper Series dp527, The Center for the Study of Rationality, Hebrew University, Jerusalem.
  3. Tovey, Craig A., 2010. "The instability of instability of centered distributions," Mathematical Social Sciences, Elsevier, vol. 59(1), pages 53-73, January.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:halshs-00121741. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.