Advanced Search
MyIDEAS: Login

Testing Weak Form Efficiency on the Toronto Stock Exchange

Contents:

Author Info

  • Vitali Alexeev

    ()
    (Department of Economics, University of Guelph, Canada.)

  • Francis Tapon

    ()
    (Department of Economics, University of Guelph, Canada.)

Abstract

We believe that in order to test for weak form efficiency in the market a vast pool of individual stocks must be analyzed rather than a stock market index. In this paper, we use a model-based bootstrap to generate a series of simulated trials and apply a modified chart pattern recognition algorithm to all stocks listed on the Toronto Stock Exchange (TSX). We compare the number of patterns detected in the original price series with the number of patterns found in the simulated series. By simulating the price path we eliminate specific time dependencies present in real data, making price changes purely random. Patterns, if consistently identified, carry information which adds value to the investment process, however, this informativeness does not guarantee profitability. We draw conclusions on the relative efficiency of some sectors of the economy. Although, we fail to reject the null hypothesis of weak form efficiency on the TSX, some sectors of the Canadian economy appear to be less efficient than others. In addition, we find negative dependency of pattern frequencies on the two moments of return distributions, variance and kurtosis.

Download Info

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Bibliographic Info

Paper provided by University of Guelph, Department of Economics and Finance in its series Working Papers with number 1002.

as in new window
Length: 29 pages
Date of creation: 2010
Date of revision:
Handle: RePEc:gue:guelph:2010-02.

Contact details of provider:
Postal: Guelph, Ontario, N1G 2W1
Phone: (519) 824-4120 ext. 53898
Fax: (519) 763-8497
Web page: https://www.uoguelph.ca/economics/
More information through EDIRC

Related research

Keywords: Market efficiency; weak form market efficiency; Canada; Toronto Stock Exchange;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Andrew Lo & Harry Mamaysky & Jiang Wang, 1999. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Computing in Economics and Finance 1999 402, Society for Computational Economics.
  2. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  3. Lui, Yu-Hon & Mole, David, 1998. "The use of fundamental and technical analyses by foreign exchange dealers: Hong Kong evidence," Journal of International Money and Finance, Elsevier, vol. 17(3), pages 535-545, June.
  4. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
  5. Russell Davidson & James G. MacKinnon, 2001. "Bootstrap Tests: How Many Bootstraps?," Working Papers 1036, Queen's University, Department of Economics.
  6. Kim, Tae-Hwan & White, Halbert, 2004. "On more robust estimation of skewness and kurtosis," Finance Research Letters, Elsevier, vol. 1(1), pages 56-73, March.
  7. Taylor, Mark P. & Allen, Helen, 1992. "The use of technical analysis in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 11(3), pages 304-314, June.
  8. Robert F. Engle & Victor K. Ng, 1991. "Measuring and Testing the Impact of News on Volatility," NBER Working Papers 3681, National Bureau of Economic Research, Inc.
  9. Sullivan, Ryan & Timmermann, Allan G & White, Halbert, 1998. "Data-Snooping, Technical Trading Rule Performance and the Bootstrap," CEPR Discussion Papers 1976, C.E.P.R. Discussion Papers.
  10. Edward R Dawson & James M. Steeley, 2003. "On the Existence of Visual Technical Patterns in the UK Stock Market," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 30(1-2), pages 263-293.
  11. Park, Cheol-Ho & Irwin, Scott H., 2004. "The Profitability of Technical Analysis: A Review," AgMAS Project Research Reports 37487, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics.
  12. Blume, Lawrence & Easley, David & O'Hara, Maureen, 1994. " Market Statistics and Technical Analysis: The Role of Volume," Journal of Finance, American Finance Association, vol. 49(1), pages 153-81, March.
  13. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
  14. Brock, W. & Lakonishok, J. & Lebaron, B., 1991. "Simple Technical Trading Rules And The Stochastic Properties Of Stock Returns," Working papers 90-22, Wisconsin Madison - Social Systems.
  15. Cheol-Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, 09.
  16. Sanford J Grossman & Joseph E Stiglitz, 1997. "On the Impossibility of Informationally Efficient Markets," Levine's Working Paper Archive 1908, David K. Levine.
  17. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Gozbasi, Onur & Kucukkaplan, Ilhan & Nazlioglu, Saban, 2014. "Re-examining the Turkish stock market efficiency: Evidence from nonlinear unit root tests," Economic Modelling, Elsevier, vol. 38(C), pages 381-384.
  2. Kristoufek, Ladislav & Vosvrda, Miloslav, 2013. "Measuring capital market efficiency: Global and local correlations structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 184-193.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:gue:guelph:2010-02.. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Stephen Kosempel).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.