IDEAS home Printed from https://ideas.repec.org/p/eth/wpswif/21-352.html
   My bibliography  Save this paper

Economic impacts of decarbonizing the Swiss passenger transport sector

Author

Listed:
  • Vanessa Angst

    (Infras AG)

  • Chiara Colesanti Senni

    (Council on Economic Policies)

  • Markus Maibach

    (Infras AG)

  • Martin Peter

    (Infras AG)

  • Noe Reidt

    (CER–ETH – Center of Economic Research at ETH Zurich, Switzerland)

  • Renger van Nieuwkoop

    (Modelworks)

Abstract

Switzerland committed to achieving net-zero emissions in 2050. This goal is particularly ambitious for the Swiss passenger transport system, which emits more than one third of Swiss CO2 emissions, and is not yet on a clear emission reduction path. We investigate the economic impact and the emission-saving potential of a decarbonization pathway for the Swiss transport sector based on three edge case scenarios and on a combination of them: (1) improved fuel/engine technology and fostered diffusion of battery electric vehicle, (2) increased capacity use of passenger cars, and (3) enhanced modal shift towards public transport. Our analysis is conducted using a multi-model framework, which interlinks a computational general equilibrium model with two external transportation models. This approach allows us to incorporate a highly disaggregated passenger transport system into the economic analysis. The framework is calibrated to Swiss data to assess the optimal scenario mix in terms of emissions and economic impact. The optimal decarbonization pathway mix slightly increases welfare and lowers CO2 emissions of passenger transport in 2050 from 6 to 1.7 million tons CO2 compared to the reference scenario. Despite the sharp reduction in emissions, a decarbonization pathway based on the considered scenarios is insufficient to reach the net-zero emission target.

Suggested Citation

  • Vanessa Angst & Chiara Colesanti Senni & Markus Maibach & Martin Peter & Noe Reidt & Renger van Nieuwkoop, 2021. "Economic impacts of decarbonizing the Swiss passenger transport sector," CER-ETH Economics working paper series 21/352, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
  • Handle: RePEc:eth:wpswif:21-352
    as

    Download full text from publisher

    File URL: https://www.ethz.ch/content/dam/ethz/special-interest/mtec/cer-eth/cer-eth-dam/documents/working-papers/WP-21-352.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jean Imbs & Isabelle Mejean, 2010. "Trade Elasticities: A Final Report for the European Commission," European Economy - Economic Papers 2008 - 2015 432, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    2. Rutherford, Thomas F., 1995. "Extension of GAMS for complementarity problems arising in applied economic analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 19(8), pages 1299-1324, November.
    3. Rivers, Nic & Jaccard, Mark, 2006. "Useful models for simulating policies to induce technological change," Energy Policy, Elsevier, vol. 34(15), pages 2038-2047, October.
    4. Simon Koesler & Michael Schymura, 2015. "Substitution Elasticities In A Constant Elasticity Of Substitution Framework - Empirical Estimates Using Nonlinear Least Squares," Economic Systems Research, Taylor & Francis Journals, vol. 27(1), pages 101-121, March.
    5. Jäntti, Markus & Pirttilä, Jukka & Selin, Håkan, 2015. "Estimating labour supply elasticities based on cross-country micro data: A bridge between micro and macro estimates?," Journal of Public Economics, Elsevier, vol. 127(C), pages 87-99.
    6. Tomáš Havránek, 2015. "Measuring Intertemporal Substitution: The Importance Of Method Choices And Selective Reporting," Journal of the European Economic Association, European Economic Association, vol. 13(6), pages 1180-1204, December.
    7. Bröcker, Johannes & Korzhenevych, Artem, 2013. "Forward looking dynamics in spatial CGE modelling," Economic Modelling, Elsevier, vol. 31(C), pages 389-400.
    8. Euijune Kim & Geoffrey Hewings & Chowoon Hong, 2004. "An Application of an Integrated Transport Network- Multiregional CGE Model: a Framework for the Economic Analysis of Highway Projects," Economic Systems Research, Taylor & Francis Journals, vol. 16(3), pages 235-258.
    9. Schafer, Andreas & Jacoby, Henry D., 2005. "Technology detail in a multisector CGE model: transport under climate policy," Energy Economics, Elsevier, vol. 27(1), pages 1-24, January.
    10. Chris Papageorgiou & Marianne Saam & Patrick Schulte, 2017. "Substitution between Clean and Dirty Energy Inputs: A Macroeconomic Perspective," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 281-290, May.
    11. Euijune Kim & Hong Sok Kim & Geoffrey J. D. Hewings, 2011. "An Application of the Integrated Transport Network-Multi-regional CGE Model An Impact Analysis of Government-Financed Highway Projects," Journal of Transport Economics and Policy, University of Bath, vol. 45(2), pages 223-245, May.
    12. van der Werf, Edwin, 2008. "Production functions for climate policy modeling: An empirical analysis," Energy Economics, Elsevier, vol. 30(6), pages 2964-2979, November.
    13. Philippe Thalmann & Marc Vielle, 2019. "Lowering CO2 emissions in the Swiss transport sector," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 155(1), pages 1-12, December.
    14. Schafer, Andreas & Jacoby, Henry D., 2006. "Vehicle technology under CO2 constraint: a general equilibrium analysis," Energy Policy, Elsevier, vol. 34(9), pages 975-985, June.
    15. Hans Lofgren & Martin Cicowiez, 2018. "Linking Armington and CET Elasticities of Substitution and Transformation to Price Elasticities of Import Demand and Export Supply: A Note for CGE Practitioners," CEDLAS, Working Papers 0222, CEDLAS, Universidad Nacional de La Plata.
    16. Bretschger, Lucas & Ramer, Roger & Schwark, Florentine, 2011. "Growth effects of carbon policies: Applying a fully dynamic CGE model with heterogeneous capital," Resource and Energy Economics, Elsevier, vol. 33(4), pages 963-980.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarica, Kemal & Tyner, Wallace E., 2013. "Alternative policy impacts on US GHG emissions and energy security: A hybrid modeling approach," Energy Economics, Elsevier, vol. 40(C), pages 40-50.
    2. Philippe Thalmann & Marc Vielle, 2019. "Lowering CO2 emissions in the Swiss transport sector," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 155(1), pages 1-12, December.
    3. Robson, Edward N. & Wijayaratna, Kasun P. & Dixit, Vinayak V., 2018. "A review of computable general equilibrium models for transport and their applications in appraisal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 31-53.
    4. Alabi, Oluwafisayo & Turner, Karen & Katris, Antonios & Calvillo, Christian, 2022. "Can network spending to support the shift to electric vehicles deliver wider economy gains? The role of domestic supply chain, price, and real wage effects," Energy Economics, Elsevier, vol. 110(C).
    5. Cao, Jing & Ho, Mun S. & Ma, Rong, 2020. "Analyzing carbon pricing policies using a general equilibrium model with production parameters estimated using firm data," Energy Economics, Elsevier, vol. 92(C).
    6. Patrizio Lecca & Javier Barbero Jimenez & Martin Aaroe Christensen & Andrea Conte & Francesco Di Comite & Jorge Diaz-Lanchas & Olga Diukanova & Giovanni Mandras & Damiaan Persyn & Stylianos Sakkas, 2018. "RHOMOLO V3:A Spatial Modelling Framework," JRC Research Reports JRC111861, Joint Research Centre.
    7. Aaron B. Gertz & James B. Davies & Samantha L. Black, 2019. "A CGE Framework for Modeling the Economics of Flooding and Recovery in a Major Urban Area," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1314-1341, June.
    8. Bretschger, Lucas & Lechthaler, Filippo & Rausch, Sebastian & Zhang, Lin, 2017. "Knowledge diffusion, endogenous growth, and the costs of global climate policy," European Economic Review, Elsevier, vol. 93(C), pages 47-72.
    9. Elena Lagomarsino & Karen Turner, 2017. "Is the production function Translog or CES? An empirical illustration using UK data," Working Papers 1713, University of Strathclyde Business School, Department of Economics.
    10. Lagomarsino, Elena, 2021. "Which nesting structure for the CES? A new selection approach based on input separability," Economic Modelling, Elsevier, vol. 102(C).
    11. Sebastian Rausch and Valerie J. Karplus, 2014. "Markets versus Regulation: The Efficiency and Distributional Impacts of U.S. Climate Policy Proposals," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    12. Diana N. Elshahawany & Eduardo A. Haddd, Michael L. Lahr, 2015. "The Potential Economic Impacts of the Proposed Development Corridor in Egypt: An Interregional CGE Approach," Working Papers, Department of Economics 2015_42, University of São Paulo (FEA-USP).
    13. Derek Lemoine, 2024. "Innovation-Led Transitions in Energy Supply," American Economic Journal: Macroeconomics, American Economic Association, vol. 16(1), pages 29-65, January.
    14. Sebastian Gechert & Tomas Havranek & Zuzana Irsova & Dominika Kolcunova, 2022. "Measuring Capital-Labor Substitution: The Importance of Method Choices and Publication Bias," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 45, pages 55-82, July.
    15. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    16. Inoue, Emiko & Taniguchi, Hiroya & Yamada, Ken, 2022. "Measuring energy-saving technological change: International trends and differences," Journal of Environmental Economics and Management, Elsevier, vol. 115(C).
    17. Peter K. Kruse-Andersen, 2019. "Directed Technical Change, Environmental Sustainability, and Population Growth," Discussion Papers 19-12, University of Copenhagen. Department of Economics.
    18. Nabernegg, Stefan & Bednar-Friedl, Birgit & Muñoz, Pablo & Titz, Michaela & Vogel, Johanna, 2019. "National Policies for Global Emission Reductions: Effectiveness of Carbon Emission Reductions in International Supply Chains," Ecological Economics, Elsevier, vol. 158(C), pages 146-157.
    19. Peeters, Paul & Dubois, Ghislain, 2010. "Tourism travel under climate change mitigation constraints," Journal of Transport Geography, Elsevier, vol. 18(3), pages 447-457.
    20. Alena Miftakhova & Clément Renoir, 2021. "Economic Growth and Equity in Anticipation of Climate Policy," CER-ETH Economics working paper series 21/355, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.

    More about this item

    Keywords

    Passenger transport; Decarbonization; Switzerland; Computable general equilibrium model;
    All these keywords.

    JEL classification:

    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • R40 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - General
    • R42 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government and Private Investment Analysis; Road Maintenance; Transportation Planning
    • R48 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government Pricing and Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eth:wpswif:21-352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/iwethch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.