Advanced Search
MyIDEAS: Login

Forecasting with Spatial Panel Data

Contents:

Author Info

  • BALTAGI B-H
  • BRESSON G.
  • PIROTTE A.

Abstract

This paper compares various forecasts using panel data with spatial error correlation. The true data generating process is assumed to be a simple error component regression model with spatial remainder disturbances of the autoregressive or moving average type. The best linear unbiased predictor is compared with other forecasts ignoring spatial correlation, or ignoring heterogeneity due to the individual effects, using Monte Carlo experiments. In addition, we check the performance of these forecasts under misspecification of the spatial error process, various spatial weight matrices, and heterogeneous rather than homogeneous panel data models.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://ermes.u-paris2.fr/doctrav/0710
Our checks indicate that this address may not be valid because: 404 Not Found. If this is indeed the case, please notify ()
Download Restriction: no

Bibliographic Info

Paper provided by ERMES, University Paris 2 in its series Working Papers ERMES with number 0710.

as in new window
Length:
Date of creation: 2007
Date of revision:
Handle: RePEc:erm:papers:0710

Contact details of provider:
Postal: 12, place du Panthéon, 75230 Paris Cedex 05
Phone: (33) 1 44 41 89 61 (66)
Fax: (33) 1 40 51 81 30
Web page: http://ermes.u-paris2.fr/
More information through EDIRC

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Taub, Allan J., 1979. "Prediction in the context of the variance-components model," Journal of Econometrics, Elsevier, vol. 10(1), pages 103-107, April.
  2. Badi H. Baltagi & Dong Li, 2006. "Prediction in the Panel Data Model with Spatial Correlation: The Case of Liquor," Center for Policy Research Working Papers 84, Center for Policy Research, Maxwell School, Syracuse University.
  3. Georges Bresson & Badi H. Baltagi & Alain Pirotte, 2007. "Panel unit root tests and spatial dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 339-360.
  4. Baillie, R.T. & Baltagi, B.H., 1994. "Prediction from the Regression Model with one-way Error Components," Papers 9405, Michigan State - Econometrics and Economic Theory.
  5. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
  6. Kapoor, Mudit & Kelejian, Harry H. & Prucha, Ingmar R., 2007. "Panel data models with spatially correlated error components," Journal of Econometrics, Elsevier, vol. 140(1), pages 97-130, September.
  7. Badi H. Baltagi, 2008. "Forecasting with panel data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 153-173.
  8. Baltagi, Badi H. & Bresson, Georges & Pirotte, Alain, 2002. "Comparison of forecast performance for homogeneous, heterogeneous and shrinkage estimators: Some empirical evidence from US electricity and natural-gas consumption," Economics Letters, Elsevier, vol. 76(3), pages 375-382, August.
  9. Bernard Fingleton, 2008. "A Generalized Method of Moments Estimator for a Spatial Panel Model with an Endogenous Spatial Lag and Spatial Moving Average Errors," Spatial Economic Analysis, Taylor & Francis Journals, vol. 3(1), pages 27-44.
  10. Richard Schmalensee & Thomas M. Stoker & Ruth A. Judson, 1998. "World Carbon Dioxide Emissions: 1950-2050," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 15-27, February.
  11. Herbert Brücker & Boriss Siliverstovs, 2006. "On the estimation and forecasting of international migration: how relevant is heterogeneity across countries?," Empirical Economics, Springer, vol. 31(3), pages 735-754, September.
  12. Luc Anselin & Rosina Moreno, 2001. "Properties of tests for spatial error components," ERSA conference papers ersa01p183, European Regional Science Association.
  13. Frees, Edward W. & Miller, Thomas W., 2004. "Sales forecasting using longitudinal data models," International Journal of Forecasting, Elsevier, vol. 20(1), pages 99-114.
  14. Bernard Fingleton, 2008. "A generalized method of moments estimator for a spatial model with moving average errors, with application to real estate prices," Empirical Economics, Springer, vol. 34(1), pages 35-57, February.
  15. Badi H. Baltagi & James M. Griffin & Weiwen Xiong, 2000. "To Pool Or Not To Pool: Homogeneous Versus Hetergeneous Estimations Applied to Cigarette Demand," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 117-126, February.
  16. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-33, May.
  17. Badi H. Baltagi & Georges Bresson & Alain Pirotte, 2004. "Tobin q: Forecast performance for hierarchical Bayes, shrinkage, heterogeneous and homogeneous panel data estimators," Empirical Economics, Springer, vol. 29(1), pages 107-113, January.
  18. Baltagi, Badi H. & Griffin, James M., 1997. "Pooled estimators vs. their heterogeneous counterparts in the context of dynamic demand for gasoline," Journal of Econometrics, Elsevier, vol. 77(2), pages 303-327, April.
  19. Rapach, David E. & Wohar, Mark E., 2004. "Testing the monetary model of exchange rate determination: a closer look at panels," Journal of International Money and Finance, Elsevier, vol. 23(6), pages 867-895, October.
  20. Hoogstrate, Andre J & Palm, Franz C & Pfann, Gerard A, 2000. "Pooling in Dynamic Panel-Data Models: An Application to Forecasting GDP Growth Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 274-83, July.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Hughes, Gordon & Chinowsky, Paul & Strzepek, Ken, 2010. "The costs of adaptation to climate change for water infrastructure in OECD countries," Utilities Policy, Elsevier, vol. 18(3), pages 142-153, September.
  2. Du, Zaichao, 2014. "Testing for serial independence of panel errors," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 248-261.
  3. Fingleton, Bernard & Palombi, Silvia, 2013. "Spatial panel data estimation, counterfactual predictions, and local economic resilience among British towns in the Victorian era," Regional Science and Urban Economics, Elsevier, vol. 43(4), pages 649-660.
  4. Badi H. Baltagi & Bernard Fingleton & Alain Pirotte, 2012. "Estimating and Forecasting With A Dynamic Spatial Panel Data Model," Center for Policy Research Working Papers 149, Center for Policy Research, Maxwell School, Syracuse University.
  5. You, Jing, 2013. "China's challenge for decarbonized growth: Forecasts from energy demand models," Journal of Policy Modeling, Elsevier, vol. 35(4), pages 652-668.
  6. Millo, Giovanni, 2014. "Maximum likelihood estimation of spatially and serially correlated panels with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 914-933.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:erm:papers:0710. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.