Advanced Search
MyIDEAS: Login

Improving forecasting performance by window and model averaging

Contents:

Author Info

  • Prasad S Bhattacharya

    ()

  • Dimitrios D Thomakos

    ()

Abstract

We present results from an extensive study on the benefits of rolling window and model averaging. Building on the recent work on rolling window averaging by Pesaran et al (2010, 2009) and on exchange rate forecasting by Molodtsova and Papell (2009), we explore whether rolling window averaging can be considered beneficial on a priori grounds, that is whether researchers can use it to improve forecasting performance and to avoid ‘window mining’ in short horizons. In addition, we investigate whether rolling window averaging can improve the performance of model averaging, especially when ‘simpler’ models are being used. Our results provide strong support for rolling window averaging, outperforming the best window forecasts more than 50% of the time across all rolling windows considered – with the outperformance being statistically significant. Furthermore, rolling window averaging smoothes out the forecast path and improves robustness of the forecasting model, thus minimizing the pitfalls associated with potential structural breaks. An illustrative simulation supports the proposed improvement with the double averaging approach. Afterwards the technique is applied in three datasets: exchange rates for 12 OECD countries, US inflation rate and US output growth rate. For exchange rates, we use the dataset of Molodtsova and Papell (2009) and replicate their analysis by considering rolling window and model averaging. The results reveal rolling window averaging can further improve the performance of the models and, in addition, when combined with model averaging brings forth the forecasting ability of ‘simpler’ economic models of exchange rates. With respect to US inflation and output growth forecasting, we again find that rolling window averaging outperforms the best individual window forecasts by more than 50% of the time, with significant differences from the benchmarks, and helps in model averaging by bringing forth the predictive power of economic variables in parsimonious models.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://cama.crawford.anu.edu.au/pdf/working-papers/2011/052011.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University in its series CAMA Working Papers with number 2011-05.

as in new window
Length: 38 pages
Date of creation: Mar 2011
Date of revision:
Handle: RePEc:een:camaaa:2011-05

Contact details of provider:
Postal: Crawford Building, Lennox Crossing, Building #132, Canberra ACT 0200
Phone: +61 2 6125 4705
Fax: +61 2 6125 5448
Email:
Web page: http://cama.crawford.anu.edu.au
More information through EDIRC

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Gourinchas, Pierre-Olivier & Rey, Hélène, 2005. "International Financial Adjustment," Center for International and Development Economics Research, Working Paper Series qt124628cx, Center for International and Development Economics Research, Institute for Business and Economic Research, UC Berkeley.
  2. Andrew Patton & Dimitris Politis & Halbert White, 2009. "Correction to “Automatic Block-Length Selection for the Dependent Bootstrap” by D. Politis and H. White," Econometric Reviews, Taylor & Francis Journals, vol. 28(4), pages 372-375.
  3. M. Hashem Pesaran & Til Schuermann & L. Vanessa Smith, 2008. "Forecasting Economic and Financial Variables with Global VARs," CESifo Working Paper Series 2263, CESifo Group Munich.
  4. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
  5. Charles Engel & Kenneth D. West, 2004. "Exchange Rates and Fundamentals," NBER Working Papers 10723, National Bureau of Economic Research, Inc.
  6. Todd E. Clark & Michael W. McCracken, 2008. "Averaging forecasts from VARs with uncertain instabilities," Working Papers 2008-030, Federal Reserve Bank of St. Louis.
  7. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  8. Paye, Bradley S. & Timmermann, Allan, 2006. "Instability of return prediction models," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 274-315, June.
  9. David Hendry & Michael P. Clements, 2001. "Pooling of Forecasts," Economics Papers 2002-W9, Economics Group, Nuffield College, University of Oxford.
  10. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
  11. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
  12. Cheung, Yin-Wong & Chinn, Menzie & Garcia Pascual, Antonio, 2003. "Empirical Exchange Rate Models of the Nineties: Are Any Fit to Survive?," Santa Cruz Center for International Economics, Working Paper Series qt5fc508pt, Center for International Economics, UC Santa Cruz.
  13. Graham Elliott & Allan Timmermann, 2008. "Economic Forecasting," Journal of Economic Literature, American Economic Association, vol. 46(1), pages 3-56, March.
  14. Rapach, David E. & Wohar, Mark E., 2002. "Testing the monetary model of exchange rate determination: new evidence from a century of data," Journal of International Economics, Elsevier, vol. 58(2), pages 359-385, December.
  15. Andrew Ang & Geert Bekaert & Min Wei, 2005. "Do Macro Variables, Asset Markets or Surveys Forecast Inflation Better?," NBER Working Papers 11538, National Bureau of Economic Research, Inc.
  16. Pesaran, M.H. & Timmermann, A., 2003. "Small Sample Properties of Forecasts from Autoregressive Models under Structural Breaks," Cambridge Working Papers in Economics 0331, Faculty of Economics, University of Cambridge.
  17. Mark, Nelson C. & Sul, Donggyu, 2001. "Nominal exchange rates and monetary fundamentals: Evidence from a small post-Bretton woods panel," Journal of International Economics, Elsevier, vol. 53(1), pages 29-52, February.
  18. Todd E. Clark & Michael W. McCracken, 2008. "Improving forecast accuracy by combining recursive and rolling forecasts," Working Papers 2008-028, Federal Reserve Bank of St. Louis.
  19. Molodtsova, Tanya & Papell, David H., 2009. "Out-of-sample exchange rate predictability with Taylor rule fundamentals," Journal of International Economics, Elsevier, vol. 77(2), pages 167-180, April.
  20. Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
  21. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
  22. George Athanasopoulos & Farshid Vahid, 2006. "VARMA versus VAR for Macroeconomic Forecasting," Monash Econometrics and Business Statistics Working Papers 4/06, Monash University, Department of Econometrics and Business Statistics.
  23. Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
  24. Raffella Giacomini & Barbara Rossi, 2005. "Detecting and Predicting Forecast Breakdowns," UCLA Economics Working Papers 845, UCLA Department of Economics.
  25. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, 02.
  26. Mark, Nelson C, 1995. "Exchange Rates and Fundamentals: Evidence on Long-Horizon Predictability," American Economic Review, American Economic Association, vol. 85(1), pages 201-18, March.
  27. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
  28. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  29. Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
  30. James H. Stock & Mark W. Watson, 1999. "Forecasting Inflation," NBER Working Papers 7023, National Bureau of Economic Research, Inc.
  31. Sarno, Lucio & Valente, Giorgio, 2008. "Exchange Rates and Fundamentals: Footloose or Evolving Relationship?," CEPR Discussion Papers 6638, C.E.P.R. Discussion Papers.
  32. Todd E. Clark & Kenneth D. West, 2004. "Using out-of-sample mean squared prediction errors to test the Martingale difference hypothesis," Research Working Paper RWP 04-03, Federal Reserve Bank of Kansas City.
  33. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  34. Papell, David H., 2006. "The Panel Purchasing Power Parity Puzzle," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(2), pages 447-467, March.
  35. Groen, Jan J J, 2005. "Exchange Rate Predictability and Monetary Fundamentals in a Small Multi-country Panel," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 495-516, June.
  36. Katrin Assenmacher-Wesche & M. Hashem Pesaran, 2008. "Forecasting the Swiss Economy Using Vecx* Models: an Exercise in Forecast Combination Across Models and Observation Windows," National Institute Economic Review, National Institute of Economic and Social Research, vol. 203(1), pages 91-108, January.
  37. Pesaran, M. Hashem & Schuermann, Til & Smith, L. Vanessa, 2009. "Rejoinder to comments on forecasting economic and financial variables with global VARs," International Journal of Forecasting, Elsevier, vol. 25(4), pages 703-715, October.
  38. Kenneth S. Rogoff & Vania Stavrakeva, 2008. "The Continuing Puzzle of Short Horizon Exchange Rate Forecasting," NBER Working Papers 14071, National Bureau of Economic Research, Inc.
  39. Kilian, Lutz, 1999. "Exchange Rates and Monetary Fundamentals: What Do We Learn from Long-Horizon Regressions?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 491-510, Sept.-Oct.
  40. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:een:camaaa:2011-05. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Cama Admin).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.