Advanced Search
MyIDEAS: Login to save this paper or follow this series

Improving forecast accuracy by combining recursive and rolling forecasts

Contents:

Author Info

  • Todd E. Clark
  • Michael W. McCracken

Abstract

This paper presents analytical, Monte Carlo, and empirical evidence on the effectiveness of combining recursive and rolling forecasts when linear predictive models are subject to structural change. We first provide a characterization of the bias-variance tradeoff faced when choosing between either the recursive and rolling schemes or a scalar convex combination of the two. From that, we derive pointwise optimal, time-varying and data-dependent observation windows and combining weights designed to minimize mean square forecast error. We then proceed to consider other methods of forecast combination, including Bayesian methods that shrink the rolling forecast to the recursive and Bayesian model averaging. Monte Carlo experiments and several empirical examples indicate that although the recursive scheme is often difficult to beat, when gains can be obtained, some form of shrinkage can often provide improvements in forecast accuracy relative to forecasts made using the recursive scheme or the rolling scheme with a fixed window width.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.kansascityfed.org/Publicat/Reswkpap/pdf/RWP04-10.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Federal Reserve Bank of Kansas City in its series Research Working Paper with number RWP 04-10.

as in new window
Length:
Date of creation: 2004
Date of revision:
Handle: RePEc:fip:fedkrw:rwp04-10

Contact details of provider:
Postal: 1 Memorial Drive, Kansas City, MO 64198-0001
Phone: (816) 881-2254
Web page: http://www.kansascityfed.org/
More information through EDIRC

Order Information:
Email:

Related research

Keywords: Forecasting;

Other versions of this item:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Donald W.K. Andrews, 1990. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Cowles Foundation Discussion Papers 943, Cowles Foundation for Research in Economics, Yale University.
  2. Yao, Yi-Ching, 1988. "Estimating the number of change-points via Schwarz' criterion," Statistics & Probability Letters, Elsevier, vol. 6(3), pages 181-189, February.
  3. Raffaella Giacomini & Halbert White, 2003. "Tests of conditional predictive ability," Boston College Working Papers in Economics 572, Boston College Department of Economics.
  4. James H. Stock & Mark W. Watson, 2001. "Forecasting Output and Inflation: The Role of Asset Prices," NBER Working Papers 8180, National Bureau of Economic Research, Inc.
  5. Inoue, Atsushi & Rossi, Barbara, 2005. "Recursive Predictability Tests for Real-Time Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 336-345, July.
  6. Clarida, Richard H. & Sarno, Lucio & Taylor, Mark P. & Valente, Giorgio, 2003. "The out-of-sample success of term structure models as exchange rate predictors: a step beyond," Journal of International Economics, Elsevier, vol. 60(1), pages 61-83, May.
  7. N. Gregory Mankiw & Jeffrey A. Miron, 1985. "The Changing Behavior of the Term Structure of Interest Rates," NBER Working Papers 1669, National Bureau of Economic Research, Inc.
  8. Lange, Joe & Sack, Brian & Whitesell, William, 2003. " Anticipations of Monetary Policy in Financial Markets," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 35(6), pages 889-909, December.
  9. James H. Stock & Mark W. Watson, 1994. "Evidence on Structural Instability in Macroeconomic Time Series Relations," NBER Technical Working Papers 0164, National Bureau of Economic Research, Inc.
  10. Robert F. Engle & Aaron D. Smith, 1999. "Stochastic Permanent Breaks," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 553-574, November.
  11. Terui, N. & van Dijk, H.K., 1999. "Combined forecasts from linear and nonlinear time series models," Econometric Institute Research Papers EI 9949-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  12. Gary Koop & Simon Potter, 2003. "Forecasting in Large Macroeconomic Panels using Bayesian Model Averaging," Discussion Papers in Economics 04/16, Department of Economics, University of Leicester.
  13. Elliott, Graham & Timmermann, Allan, 2002. "Optimal Forecast Combination Under General Loss Functions and Forecast Error Distributions," University of California at San Diego, Economics Working Paper Series qt15r9t2q2, Department of Economics, UC San Diego.
  14. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
  15. Hamilton, James Douglas & Kim, Dong Heon, 2000. "A Re-examination of the Predictability of Economic Activity Using the Yield Spread," University of California at San Diego, Economics Working Paper Series qt69v8p1m9, Department of Economics, UC San Diego.
  16. Orphanides, Athanasios & van Norden, Simon, 2005. "The Reliability of Inflation Forecasts Based on Output Gap Estimates in Real Time," CEPR Discussion Papers 4830, C.E.P.R. Discussion Papers.
  17. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
  18. Arturo Estrella & Gikas A. Hardouvelis, 1989. "The term structure as a predictor of real economic activity," Research Paper 8907, Federal Reserve Bank of New York.
  19. Jushan Bai, 1997. "Estimation Of A Change Point In Multiple Regression Models," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 551-563, November.
  20. John M. Maheu & Stephen Gordon, 2004. "Learning, Forecasting and Structural Breaks," Cahiers de recherche 0422, CIRPEE.
  21. Cho, In-Koo & Sargent, Thomas J., 2000. "Escaping Nash inflation," Working Paper Series 0023, European Central Bank.
  22. Allan Timmermann & M. Hashem Pesaran, 2002. "Market Timing and Return Prediction under Model Instability," FMG Discussion Papers dp412, Financial Markets Group.
  23. Paye, Bradley S. & Timmermann, Allan, 2002. "How Stable are Financial Prediction Models? Evidence from US and International Stock Market Data," University of California at San Diego, Economics Working Paper Series qt74v515fr, Department of Economics, UC San Diego.
  24. Min, Chung-ki & Zellner, Arnold, 1993. "Bayesian and non-Bayesian methods for combining models and forecasts with applications to forecasting international growth rates," Journal of Econometrics, Elsevier, vol. 56(1-2), pages 89-118, March.
  25. William Poole, 2002. "Flation," Speech 49, Federal Reserve Bank of St. Louis.
  26. Edgerton, David & Wells, Curt, 1994. "Critical Values for the Cusumsq Statistic in Medium and Large Sized Samples," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 56(3), pages 355-65, August.
  27. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
  28. Richard H. Clarida & Mark P. Taylor, 1997. "The Term Structure Of Forward Exchange Premiums And The Forecastability Of Spot Exchange Rates: Correcting The Errors," The Review of Economics and Statistics, MIT Press, vol. 79(3), pages 353-361, August.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:fip:fedkrw:rwp04-10. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lu Dayrit).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.