Advanced Search
MyIDEAS: Login

Belief Closure : A Semantics of Common Knowledge for Modal Propositional Logic

Contents:

Author Info

  • LISMONT, Luc

    (G.R.E.Q.U.E; Ecole des Hautes Etudes en Sciences Sociales, Marseille)

  • MONGIN, Philippe

    (Centre National de la Recherche Scientifique ( France) and CORE, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium)

Abstract

The paper axiomatizes individual and common belief by means of modal propositional logic systems of varying strength. The weakest system of all just requires the monotonicity of individual belief on top of the axiom and rules of common belief. It is proved to be sound and complete with respect to a specially devised variant of neighbourhood semantiC's. The remaining systems include a K-system for each individual. They are shown to be sound and complete with respect to suitable variants of Kripke semantics. The specific features of either neighbourhood or Kripke semantics in this paper relate to the validation clause for common belief. Informally, we define a proposition to be belief closed if everybody believes it at every world where it is true, and we define a proposition to be common belief at a world if it is implied by a belief closed proposition that everybody believes at that particular world. This "fixed-point" or "circular" account of common belief is seen to imply the more standard "iterate" account in terms of countably infinite sequences of share beliefs. Axiomatizations of common knowledge can be secured by adding the truth axiom of individual belief to any system. The paper also briefly discusses game-theoretic papers which anticipated the belief closure semantics.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://alfresco.uclouvain.be/alfresco/download/attach/workspace/SpacesStore/9d027511-ffda-441e-801a-71d8c7f2c46b/coredp_1993_39.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) in its series CORE Discussion Papers with number 1993039.

as in new window
Length:
Date of creation: 01 Oct 1993
Date of revision:
Handle: RePEc:cor:louvco:1993039

Contact details of provider:
Postal: Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium)
Phone: 32(10)474321
Fax: +32 10474304
Email:
Web page: http://www.uclouvain.be/core
More information through EDIRC

Related research

Keywords:

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. LISMONT, Luc & MONGIN, Philippe, 1994. "On the Logic of Common Belief and Common Knowledge," CORE Discussion Papers 1994005, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  2. Modica, Salvatore & Rustichini, Aldo, 1999. "Unawareness and Partitional Information Structures," Games and Economic Behavior, Elsevier, vol. 27(2), pages 265-298, May.
  3. Paul Milgrom, 1979. "An Axiomatic Characterization of Common Knowledge," Discussion Papers 393R, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  4. Samet, Dov, 1990. "Ignoring ignorance and agreeing to disagree," Journal of Economic Theory, Elsevier, vol. 52(1), pages 190-207, October.
  5. Bacharach, Michael, 1985. "Some extensions of a claim of Aumann in an axiomatic model of knowledge," Journal of Economic Theory, Elsevier, vol. 37(1), pages 167-190, October.
  6. Robert J Aumann, 1999. "Agreeing to Disagree," Levine's Working Paper Archive 512, David K. Levine.
  7. Monderer, Dov & Samet, Dov, 1989. "Approximating common knowledge with common beliefs," Games and Economic Behavior, Elsevier, vol. 1(2), pages 170-190, June.
  8. John Geanakoplos, 1992. "Common Knowledge," Journal of Economic Perspectives, American Economic Association, vol. 6(4), pages 53-82, Fall.
  9. Kaneko, Mamoru & Nagashima, Takashi, 1991. "Final decisions, the Nash equilibrium and solvability in games with common knowledge of logical abilities," Mathematical Social Sciences, Elsevier, vol. 22(3), pages 229-255, December.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Colombetti, Marco, 1999. "A modal logic of intentional communication," Mathematical Social Sciences, Elsevier, vol. 38(2), pages 171-196, September.
  2. Giacomo Bonanno, 2003. "Intersubjective Consistency Of Knowledge And Belief," Working Papers 983, University of California, Davis, Department of Economics.
  3. Stephen Morris & Hyun Song Shin, . ""Approximate Common Knowledge and Co-ordination: Recent Lessons from Game Theory''," CARESS Working Papres 96-07, University of Pennsylvania Center for Analytic Research and Economics in the Social Sciences.
  4. Pierpaolo Battigali & Giacomo Bonanno, . "Recent Results On Belief, Knowledge And The Epistemic Foundations Of Game Theory," Department of Economics 98-14, California Davis - Department of Economics.
  5. Heifetz, Aviad, 1996. "Common belief in monotonic epistemic logic," Mathematical Social Sciences, Elsevier, vol. 32(2), pages 109-123, October.
  6. Bonanno, Giacomo & Nehring, Klaus, 1998. "On the logic and role of Negative Introspection of Common Belief," Mathematical Social Sciences, Elsevier, vol. 35(1), pages 17-36, January.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cor:louvco:1993039. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.