IDEAS home Printed from https://ideas.repec.org/p/ags/aaea21/313917.html
   My bibliography  Save this paper

Integrated assessment of N runoff in the Gulf of Mexico: an application of spatially explicit partial equilibrium and HAWQS models

Author

Listed:
  • Xu, Yuelu
  • Elbakidze, Levan

Abstract

No abstract is available for this item.

Suggested Citation

  • Xu, Yuelu & Elbakidze, Levan, 2021. "Integrated assessment of N runoff in the Gulf of Mexico: an application of spatially explicit partial equilibrium and HAWQS models," 2021 Annual Meeting, August 1-3, Austin, Texas 313917, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea21:313917
    DOI: 10.22004/ag.econ.313917
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/313917/files/Abstracts_21_05_04_11_28_13_89__98_236_79_214_0.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.313917?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cropper, Maureen L & Oates, Wallace E, 1992. "Environmental Economics: A Survey," Journal of Economic Literature, American Economic Association, vol. 30(2), pages 675-740, June.
    2. Elbakidze, Levan & Fa’anunu, Benjamin & Mamula, Aaron & Taylor, R. Garth, 2017. "Evaluating economic efficiency of a water buyback program: The Klamath irrigation project," Resource and Energy Economics, Elsevier, vol. 48(C), pages 68-82.
    3. Rabotyagov, Sergey & Campbell, Todd & Jha, Manoj & Gassman, Philip W. & Arnold, Jeffrey & Kurkalova, Lyubov & Secchi, Silvia & Feng, Hongli & Kling, Catherine L., 2010. "Least-cost control of agricultural nutrient contributions to the Gulf of Mexico hypoxic zone," ISU General Staff Papers 201009010700001802, Iowa State University, Department of Economics.
    4. Jayash Paudel & Christine L. Crago, 2021. "Environmental Externalities from Agriculture: Evidence from Water Quality in the United States," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(1), pages 185-210, January.
    5. Gassman, Philip W. & Reyes, Manuel R. & Green, Colleen H. & Arnold, Jeffrey G., 2007. "The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions," ISU General Staff Papers 200701010800001027, Iowa State University, Department of Economics.
    6. Chen, Xiaoguang & Huang, Haixiao & Khanna, Madhu & Önal, Hayri, 2014. "Alternative transportation fuel standards: Welfare effects and climate benefits," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 241-257.
    7. Yi, F. & McCarl, B. & Zhou, X., 2018. "Damages of Surface Ozone: Evidence from Agricultural Sector in China," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 276973, International Association of Agricultural Economists.
    8. Marshall, Elizabeth & Aillery, Marcel & Ribaudo, Marc & Key, Nigel & Sneeringer, Stacy & Hansen, LeRoy & Malcolm, Scott & Riddle, Anne, 2018. "Reducing Nutrient Losses From Cropland in the Mississippi/Atchafalaya River Basin: Cost Efficiency and Regional Distribution," Economic Research Report 277567, United States Department of Agriculture, Economic Research Service.
    9. Ding, Ya & Peterson, Jeffrey M., 2012. "Comparing the Cost-Effectiveness of Water Conservation Policies in a Depleting Aquifer: A Dynamic Analysis of the Kansas High Plains," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 44(2), pages 1-12, May.
    10. David A. Keiser & Catherine L. Kling & Joseph S. Shapiro, 2019. "The low but uncertain measured benefits of US water quality policy," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(12), pages 5262-5269, March.
    11. Pennington, Derric N. & Dalzell, Brent & Nelson, Erik & Mulla, David & Taff, Steve & Hawthorne, Peter & Polasky, Stephen, 2017. "Cost-effective Land Use Planning: Optimizing Land Use and Land Management Patterns to Maximize Social Benefits," Ecological Economics, Elsevier, vol. 139(C), pages 75-90.
    12. Yijia Li & Ruiqing Miao & Madhu Khanna, 2019. "Effects of Ethanol Plant Proximity and Crop Prices on Land-Use Change in the United States," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(2), pages 467-491.
    13. Ribaudo, Marc & Marshall, Elizabeth & Aillery, Marcel, 2018. "Cost-Effective Strategies for Reducing Cropland Nutrient Deliveries to the Gulf of Mexico," Amber Waves:The Economics of Food, Farming, Natural Resources, and Rural America, United States Department of Agriculture, Economic Research Service, vol. 0(08), September.
    14. Johansson, Robert & Peters, Mark & House, Robert, 2007. "Regional Environment and Agriculture Programming Model," Technical Bulletins 184314, United States Department of Agriculture, Economic Research Service.
    15. Hendricks, Nathan P. & Peterson, Jeffrey M., 2012. "Fixed Effects Estimation of the Intensive and Extensive Margins of Irrigation Water Demand," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 37(1), pages 1-19, April.
    16. Piggott, Nicholas E. & Wohlgenant, Michael K., 2002. "Price elasticities, joint products, and international trade," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 46(4), pages 1-14.
    17. Mekbib G. Haile & Matthias Kalkuhl & Joachim von Braun, 2016. "Worldwide Acreage and Yield Response to International Price Change and Volatility: A Dynamic Panel Data Analysis for Wheat, Rice, Corn, and Soybeans," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(1), pages 172-190.
    18. Westcott, Paul C. & Hoffman, Linwood A., 1999. "Price Determination for Corn and Wheat: The Role of Market Factors and Government Programs," Technical Bulletins 33581, United States Department of Agriculture, Economic Research Service.
    19. Montgomery, W. David, 1972. "Markets in licenses and efficient pollution control programs," Journal of Economic Theory, Elsevier, vol. 5(3), pages 395-418, December.
    20. Levan Elbakidze & Brett Schiller & R. Garth Taylor, 2017. "Estimation of Short and Long Run Derived Irrigation Water Demands and Elasticities," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-22, January.
    21. Schneider, Uwe A. & McCarl, Bruce A. & Schmid, Erwin, 2007. "Agricultural sector analysis on greenhouse gas mitigation in US agriculture and forestry," Agricultural Systems, Elsevier, vol. 94(2), pages 128-140, May.
    22. Bruce A. McCarl, 1982. "Cropping Activities in Agricultural Sector Models: A Methodological Proposal," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 64(4), pages 768-772.
    23. Ishida, Kazuyoshi & Jaime, Malaga, 2015. "A Partial Equilibrium of the Sorghum Markets in US, Mexico, and Japan," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205708, Agricultural and Applied Economics Association.
    24. Uwe Schneider & Bruce McCarl, 2003. "Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 24(4), pages 291-312, April.
    25. Pierre Mérel & Fujin Yi & Juhwan Lee & Johan Six, 2014. "A Regional Bio-economic Model of Nitrogen Use in Cropping," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(1), pages 67-91.
    26. repec:ags:jrapmc:122312 is not listed on IDEAS
    27. Ribaudo, Marc O. & Heimlich, Ralph & Claassen, Roger & Peters, Mark, 2001. "Least-cost management of nonpoint source pollution: source reduction versus interception strategies for controlling nitrogen loss in the Mississippi Basin," Ecological Economics, Elsevier, vol. 37(2), pages 183-197, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yuelu & Elbakidze, Levan & Yen, Haw & Arnold, Jeffrey G. & Gassman, Philip W. & Hubbart, Jason & Strager, Michael P., 2022. "Integrated assessment of nitrogen runoff to the Gulf of Mexico," Resource and Energy Economics, Elsevier, vol. 67(C).
    2. Catherine L. Kling & Yiannis Panagopoulos & Sergey S. Rabotyagov & Adriana M. Valcu & Philip W. Gassman & Todd Campbell & Michael J. White & Jeffrey G. Arnold & Raghavan Srinivasan & Manoj K. Jha & Je, 2014. "LUMINATE: linking agricultural land use, local water quality and Gulf of Mexico hypoxia," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 41(3), pages 431-459.
    3. Garnache, Cloe & Merel, Pierre R. & Lee, Juhwan & Six, Johan, 2014. "Markets for Agricultural Greenhouse Gas Offsets: The Role of Policy Design on Abatement Efficiency," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170718, Agricultural and Applied Economics Association.
    4. Moon, Jin-Young & Apland, Jeffrey & Folle, Solomon & Mulla, David J., 2012. "Environmental Impacts of Cellulosic Feedstock Production: A Case Study of a Cornbelt Aquifer," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 125016, Agricultural and Applied Economics Association.
    5. Catherine L. Kling & Yiannis Panagopoulos & Adriana Valcu-Lisman & Philip W. Gassman & Sergey Rabotyagov & Todd Campbell & Mike White & Jeffrey G. Arnold & Raghavan Srinivasan & Manoj Jha & Jeff Richa, 2014. "Land Use Model Integrating Agriculture and the Environment (LUMINATE): Linkages between Agricultural Land Use, Local Water Quality and Hypoxic Concerns in the Gulf of Mexico Basin," Center for Agricultural and Rural Development (CARD) Publications 14-wp546, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    6. Garnache, Cloé & Mérel, Pierre R. & Lee, Juhwan & Six, Johan, 2017. "The social costs of second-best policies: Evidence from agricultural GHG mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 39-73.
    7. Elbakidze, Levan & Vinson, Hannah & Cobourn, Kelly & Taylor, R.Garth, 2018. "Efficient groundwater allocation and binding hydrologic externalities," Resource and Energy Economics, Elsevier, vol. 53(C), pages 147-161.
    8. Heckelei, Thomas & Britz, Wolfgang & Zhang, Yinan, 2012. "Positive Mathematical Programming Approaches – Recent Developments in Literature and Applied Modelling," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(1), pages 1-16, April.
    9. Valcu, Adriana Mihaela, 2013. "Agricultural nonpoint source pollution and water quality trading: empirical analysis under imperfect cost information and measurement error," ISU General Staff Papers 201301010800004451, Iowa State University, Department of Economics.
    10. Sergey S. Rabotyagov & Manoj Jha & Todd D. Campbell, 2010. "Nonpoint-Source Pollution Reduction for an Iowa Watershed: An Application of Evolutionary Algorithms," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 58(s1), pages 411-431, December.
    11. Huang, Yu-Kai & Bawa, Ranjit & Mullen, Jeffrey & Hoghooghi, Nahal & Kalin, Latif & Dwivedi, Puneet, 2022. "Designing Watersheds for Integrated Development (DWID): A stochastic dynamic optimization approach for understanding expected land use changes to meet potential water quality regulations," Agricultural Water Management, Elsevier, vol. 271(C).
    12. Levan Elbakidze & Brett Schiller & R. Garth Taylor, 2017. "Estimation of Short and Long Run Derived Irrigation Water Demands and Elasticities," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-22, January.
    13. Frans P. Vries & Nick Hanley, 2016. "Incentive-Based Policy Design for Pollution Control and Biodiversity Conservation: A Review," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(4), pages 687-702, April.
    14. Rabotyagov, Sergey S., 2007. "Four essays on environmental policy under uncertainty with applications to water quality and carbon sequestration," ISU General Staff Papers 2007010108000016610, Iowa State University, Department of Economics.
    15. Akira Maeda, 2012. "Setting trigger price in emissions permit markets equipped with a safety valve mechanism," Journal of Regulatory Economics, Springer, vol. 41(3), pages 358-379, June.
    16. Chen, Xiaoguang & Khanna, Madhu, 2018. "Effect of corn ethanol production on Conservation Reserve Program acres in the US," Applied Energy, Elsevier, vol. 225(C), pages 124-134.
    17. Quintana-Ashwell, Nicolas E. & Peterson, Jeffrey M., 2014. "The Dynamic Impact of Technical Progress on Common-pool Groundwater Use and Depletion," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196891, Southern Agricultural Economics Association.
    18. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    19. Khalil Helioui, 2006. "Coordination internationale des politiques climatiques : quelle efficacité ?," Working Papers hal-00866433, HAL.
    20. Chuang Li & Subhash C. Ray, 2021. "Opportunity Cost and Employment Effect of Emission Reduction: An Inter-Industry Comparison of Targeted Pollution Reduction," Working papers 2021-13, University of Connecticut, Department of Economics.

    More about this item

    Keywords

    Environmental Economics and Policy; Resource/Energy Economics and Policy; Agricultural and Food Policy;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea21:313917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.